§5.3 权、弱权

空间 X 的非空的开集族 **3**称为 X 的 π 基(π -base),如果 X 的每一非空开集含有 **3**中的某元.空间 X 的 π 权(π -weight)定义为 π w(X)= ω +min{|**3**|:**3**是 X 的 π 权}.空间 X 的 α - α 网络权(α - α -netweight)定义为 $\alpha\alpha$ nw(X)= ω +min{|**3**|: α 的子集 **3**是 X 的 α 网络}.

显然, 对于空间 X, $d(X) \le \pi w(X) \le w(X)$.

引理 5.3.1 对于每一 $\{X, \alpha\}$ 有 $\alpha\alpha$ nw $(X)=\alpha$ a $(X)\alpha$ nw(X).

证明 由定义知 α nw(X) $\leq \alpha \alpha$ nw(X). 因为每一 α 网络是 α 覆盖,所以 α a(X) $\leq \alpha \alpha$ nw(X),因而 α a(X) α nw(X) α nw(X).

另一方面,设 $\lambda = \alpha$ a(X) α nw(X). 设 α 的子集 \mathcal{U} 是 X 的 α 覆盖且| \mathcal{U} | $\leq \lambda$,**3**是 X 的关于有限并封闭的闭 α 网络且| \mathcal{S} | $\leq \lambda$,则 $\mathcal{U} \wedge \mathcal{S}$] 是 α 的子集. 如果 A $\in \alpha$ 且 V 是 A 在 X 中的邻域,因为 \mathcal{U} 是 X 的 α 覆盖,存在 U $\in \mathcal{U}$ 使得 A \subset U,又因为 \mathcal{S} 是 X 的 α 网络,存在 B $\in \mathcal{S}$ 使得 A \subset B \subset V,于是 A \subset U \cap B \subset V,所以 α 的子集 $\mathcal{U} \wedge \mathcal{S}$ 是 X 的 α 网络,从而 $\alpha \alpha$ nw(X) $\leq |\mathcal{U} \wedge \mathcal{S}| \leq \lambda$. 故 $\alpha \alpha$ nw(X) $= \alpha$ a(X) α nw(X).

引理5.3.2 设G是拓扑群,则

- (1) $w(G) = \chi(G)d(G) = \chi(G)nw(G)$;
- (2) π w(G)=w(G).

证明 (1) 显然, χ (G)d(G) $\leq \chi$ (G)nw(G) \leq w(G). 下面证明 w(G) $\leq \chi$ (G)d(G). 设 **2** 是 G 的单位元 e 的由对称元组成的局部基,D 是 G 的稠密子集,对于 G 的任一非空开集 W 及 w \in W,由于 g(x,y)=wxy 是从 G \times G 到 G 的连续函数,且 g(e, e)=w \in W,存在 B \in **3** 和 d \in D 使得 wBB \subset W 且 d \in wB,于是 w \in dB $^{-1}$ =dB \subset wBB \subset W,所以{dB: d \in D,B \in **2**} 是 G 的基,因而 w(G) $\leq \chi$ (G)d(G). 故 w(G)= χ (G)d(G)= χ (G)nw(G).

(2) 由(1)和引理 5.2.10, π w(G) \leq w(G)= χ (G)d(G) \leq $\pi\chi$ (G) π w(G)= π w(G), 所以 π w(G)=w(G).

定理 5.3.3 对于每一 $\{X, \alpha\}$ 有 w($C_{\alpha}(X)$)= π w($C_{\alpha}(X)$)= $\alpha\alpha$ nw(X).

证明 由定理 4.3.11 和引理 5.3.2, $w(C_{\alpha}(X)) = \pi w(C_{\alpha}(X)) = \chi (C_{\alpha}(X)) nw(C_{\alpha}(X))$. 由定理 5.2.11, $\chi (C_{\alpha}(X)) = \alpha a(X)$, 由定理 5.1.1, $nw(C_{\alpha}(X)) = \alpha nw(X)$, 所以再由引理 5.3.1 知 $w(C_{\alpha}(X)) = \alpha \alpha nw(X)$.

由引理 5.3.1, 当 α 由 X 的所有非空的紧子集组成时, $\alpha\alpha$ nw(X)= ω 当且仅当 X 是半紧

的 \aleph_0 空间; 当 α 由空间 X 的所有非空的有限子集组成时, $\alpha\alpha$ $nw(X)=\omega$ 当且仅当 X 是可数的.

推论 5.3.4 对于每一空间 X, C_{ι} (X)是第二可数空间当且仅当 X 是半紧的 \aleph_0 空间. ■

推论 5.3.5 对于每一空间 $X, C_{p}(X)$ 是第二可数空间当且仅当 X 是可数空间. ■

在§5.1 中定义了弱权(weak weight),即空间 X 的弱权定义为 ww(X)= ω +min{w(Y): 存在从 X 到空间 Y 的连续双射}. 定理 5.1.6 表明空间 X 的弱权可用以刻画空间 C_α (X)的稠密度. 下面将刻画 C_α (X)的弱权. 先证明两个基数不等式.

引理 5.3.6 对于空间 X,则

- (1) $|X| \le 2^{w(X)}$;
- (2) $w(X) \le 2^{d(X)}$.

证明 (1) 设 β 是空间 X 的基且 $|\beta|=w(X)$. 对于每一 $x \in X$, 令 $\beta_x = \{B \in \beta: x \in B\}$, 则 β_x 是 x 在 X 的邻域基,于是对于 $(T_0$ 空间)X 中不同的点 x 和 y, $\beta_x \neq \beta_y$. 定义 φ : $X \to P(\beta)(\beta)$ 的幂集)使得 $\varphi(x)=\beta_x$,则 φ 是单射,而 $|P(\beta)|=2^{w(X)}$,所以 $|X| \le 2^{w(X)}$.

(2) 设 D 是 X 的稠密子集且|D|=d(X). 令 β ={ \overline{B}° : B \subset D}. 因为 D 是 X 的稠密子集,对于 X 的每一开集 U, U \subset \overline{U} = $\overline{U \cap D}$, 于是 β 是(正则空间)X 的基,所以 w(X) \leq 2 d(X).

引入无限基数的对数 (logarithm) 概念. 对于无限基数 λ ,定义 $\log(\lambda)=\min\{\beta:$ $\lambda \leq 2^{\beta}\}$. 引理 5.3.6 表明 $\log(|X|) \leq w(X)$, $\log(w(X)) \leq d(X)$.

引理 5.3.7 对于每一空间 X, $\psi(X)\log(nw(X)) \le ww(X)$.

证明 显然, $\psi(X) \le ww(X)$ (练习 5.2.7). 设 $\varphi: X \to Y$ 是连续的双射且 w(Y) = ww(X), 由 引 理 5.3.6(1), $nw(X) \le |X| = |Y| \le 2^{w(Y)} = 2^{ww(X)}$,所以 $\log(nw(X)) \le ww(X)$,故 $\psi(X) \log(nw(X)) \le ww(X)$.

为了证明关于弱权的主要定理,还需要引入特殊的度量空间:刺猬空间(hedgehog, Engelking[1989]).

设无限集合 S 的基数是 κ . 对于每一 $s \in S$,让 $\mathbb{I}_s = \mathbb{I} \times \{s\}$. 在集 $\bigcup_{s \in S} \mathbb{I}_s$ 上定义二元关系~如下: $(x, s) \sim (y, t)$ 当且仅当 x = y = 0,或 x = y 且 s = t. 则~是等价关系. 等价类的集合记为 $J(\kappa)$.

定义 d: $J(\kappa) \times J(\kappa) \rightarrow [0, +\infty)$ 使得每一 d([(x, s)], [(y, t)])= $\begin{cases} |x-y|, \text{如果s} = t \\ x+y, \text{如果s} \neq t \end{cases}$ 则 d 是 $J(\kappa)$

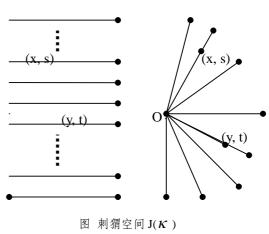
上的距离函数. 度量空间($J(\kappa)$, d)称为具有 κ 个刺的刺猬(hedgehog of spininess κ).

引理 5.3.8 设 *κ* 是无限基数,则

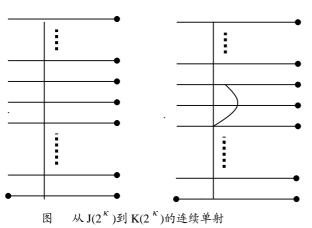
- (1) $w(J(\kappa)) = \kappa$;
- (2) 每一权为 κ 的度量空间可嵌入权为 κ 的度量空间 $J(\kappa)^{\omega}$;
- (3) 每一权为 2^{κ} 的度量空间的弱权不超过 κ .

证明 (1) 由于{B_d([(r, s)], q): s ∈ S, r, q ∈ \mathbb{Q} , r ∈ \mathbb{I} , q>0}是 J(κ)的基,所以 w(J(κ)) ≤ κ . 又由于{B_d([(1, s)], 1): s ∈ S}是 J(κ)的基数为 κ 的不相交的开集族,于是 w(J(κ)) ≥ κ . 故 w(J(κ))= κ .

(2) 设 X 是 权 为 κ 的 度 量 空 间,则 X 具 有 σ 离 散 基 $\mathcal{S}=\bigcup_{n\in\mathbb{N}}\mathcal{S}_n$,其中每一 $\mathcal{S}_n=\{U_s\}_{s\in S_n}$ 是 X 的 离 散 开 集 族. 让 $S=\bigcup_{n\in\mathbb{N}}S_n$,不妨设 $|S|=\kappa$.对于每一 $s\in S$,定义 $j_s:\mathbb{I}\to J(\kappa)$ 使得每一 $j_s(x)=[(x,s)]$,则 j_s 是 嵌 入. 对于每一 $n\in\mathbb{N}$ 和 $s\in S_n$,因为 X



是度量空间,存在 $f_s \in C(X, \mathbb{I})$ 使得 $U_s = f_s^{-1}((0, 1])$ (练习 2.2.3). 定义 $g_n \colon X \to J(\kappa)$ 使得当



 $\mathbf{x} \in \mathbf{U}_s$ 时 $\mathbf{g}_n(\mathbf{x}) = \mathbf{j}_s \mathbf{f}_s(\mathbf{x})$, 当 $\mathbf{x} \in \mathbf{X}$ \mathbf{U}_s 时 $\mathbf{g}_n(\mathbf{x}) = \mathbf{j}_{s_0}(0)$, 其中固定 $\mathbf{g}_n(\mathbf{x}) = \mathbf{j}_s \mathbf{f}_s(\mathbf{x})$. 则 当 $\mathbf{x} \in \overline{\mathbf{U}}_s$ 时 仍 有 $\mathbf{g}_n(\mathbf{x}) = \mathbf{j}_s \mathbf{f}_s(\mathbf{x})$. 由于{ $\overline{\mathbf{U}}_s$ } $_{s \in S_n}$ 是 \mathbf{X} 的 离散闭集族,于是 \mathbf{g}_n 是连续函数. 又由于 **3**是 \mathbf{X} 的基, 易验证函数列{ \mathbf{g}_n }分离 \mathbf{X} 的点与闭集. 由对角线引理(定理

- 4.5.2),对角线函数 $\Delta: X \to J(\kappa)^{\omega}$ 是嵌入. 由引理 5.0.1, $w(J(\kappa)^{\omega})=\max\{w(J(\kappa)), \omega\}=\kappa$,所以 $J(\kappa)^{\omega}$ 是权为 κ 的度量空间. 故X 可嵌入权为 κ 的度量空间 $J(\kappa)^{\omega}$.
- (3) 设 X 是权为 2 ^κ 的度量空间. 由(2), X 可嵌入刺猬空间 $J(2^{\kappa})$ 的可数次积空间 $J(2^{\kappa})^{\omega}$. 令 $K(2^{\kappa})=\mathbb{I}\times 2^{\kappa}$, 其中 2 ^κ 是具有两个点的离散空间的 κ 次积空间,则存在从 $J(2^{\kappa})$ 到 $K(2^{\kappa})$ 的自然的连续单射 (练习 5.3.1),于是存在从 $J(2^{\kappa})^{\omega}$ 到 $K(2^{\kappa})^{\omega}$ 的连续单射,所以 $ww(X) \leq w(K(2^{\kappa})^{\omega})=max\{\omega, w(K(2^{\kappa}))=w(2^{\kappa})=\kappa.$

定理 5.3.9 对于每一 $\{X, \alpha\}$ 有 ww($C_{\alpha}(X)$)=w α c(X)log(α nw(X)).

证明 由定理 5.2.3 和定理 5.1.1, ψ (C_{α} (X))=w α c(X), nw(C_{α} (X))= α nw(X). 又由引理 5.3.7, ψ (C_{α} (X)) \log (nw(C_{α} (X))) \leq ww(C_{α} (X)), 所以 w α $c(X)\log(\alpha nw(X))\leq ww$ (C_{α} (X)).

另一方面,为了证明 ww(C $_{\alpha}$ (X)) \leq w α c(X)log(α nw(X)),设 λ =w α c(X), γ =log(α nw(X)).于是存在 α 的子集 $\{A_t\}_{t\in T}$ 使得 $[T] \leq \lambda$ 且 $\bigcup_{t\in T} A_t$ 稠密于 X.对于每一 $t\in T$,下面证明 ww(C $_{\alpha}$ (A $_t$)) \leq γ . 由于 A $_t\in \alpha$,所以 C $_{\alpha}$ (A $_t$) 是可度量化的,于是 w(C $_{\alpha}$ (A $_t$)) =d(C $_{\alpha}$ (A $_t$)).又由定理 4.5.7(1)和引理 5.1.5,包含函数 i: A $_t$ \rightarrow X 诱导了连续的满 $i^*: C_{\alpha}$ (X) \rightarrow C $_{\alpha}$ (A $_t$),于是 d(C $_{\alpha}$ (A $_t$)) \leq d(C $_{\alpha}$ (X)).再由定理 5.1.1, d(C $_{\alpha}$ (X)) \leq nw(C $_{\alpha}$ (X)) = α nw(X) \leq 2 γ . 从而度量空间 C $_{\alpha}$ (A $_t$)的权不超过 2 γ . 由引理 5.3.8, ww(C $_{\alpha}$ (A $_t$)) \leq γ .

让 $Y=\oplus_{t\in T}A_t$, $p: Y\to X$ 是自然函数,则 p 是几乎满的,由定理 4.5.6(1)和定理 4.5.7(1),诱导函数 $p^*: C_\alpha(X)\to C_\alpha(Y)$ 是连续单射,再由定理 $4.5.16, C_\alpha(Y)$ 同胚于 $\prod_{t\in T}C_\alpha(A_t)$,于 是 $ww(C_\alpha(X))\le ww(C_\alpha(Y))=ww(\prod_{t\in T}C_\alpha(A_t))\le \sum_{t\in T}ww(C_\alpha(A_t))$ (练习 $5.3.2)\le \lambda\gamma$. 故 $ww(C_\alpha(X))=w\alpha c(X)\log(\alpha nw(X))$.

由引理 5.3.6(2), α $nw(X) \le w(X) \le 2^{d(X)}$, 所以 $\log(\alpha nw(X)) \le d(X)$, 从而 $d(X)\log(\alpha nw(X))=d(X)$. 若 α 是 X的所有非空有限集组成的族,则 $w\alpha c(X)=d(X)$,于是由定理 5.3.9,有下述推论,它是定理 5.1.6关于点态收敛拓扑的对偶定理.

推论 5.3.10 对于每一空间 X, ww($C_p(X)$)=d(X). 特别地, $C_p(X)$ 有较粗的可分度量拓扑当且仅当 X 是可分空间(推论 5.2.5). \blacksquare

定理 5.3.9 的等价命题是 ww(C $_{\alpha}$ (X)) $\leq \lambda$ 当且仅当 w α c(X) $\leq \lambda$ 且 α nw(X) $\leq 2^{\lambda}$.

推论 5.3.11 对于每一空间 X, $C_k(X)$ 有较粗的可分度量拓扑当且仅当 X 是几乎 σ 紧空间且 $knw(X) \leq 2^\omega$. \blacksquare

练习

- **5.3.1** 证明: 从 $J(2^{\kappa})$ 到 $K(2^{\kappa})$ 的自然单射是连续的(引理 5.3.8).
- **5.3.2** 对于积空间 $\prod_{s \in S} X_s$, 证明: ww($\prod_{s \in S} X_s$) $\leq \sum_{s \in S} ww(X_s)$.
- **5.3.3** 证明: $C_k(S_{\omega})$, $C_k(S_2)$ 都是可分度量空间.

§5.4 Tightness、扇 tightness

空间 X 的 tightness 定义为 $t(X)=\sup\{t(X, x): x\in X\}$, 其中 X 在 x 的 tightness 是 $t(X, x)=\omega+\min\{\lambda: 对于 X$ 的子集 Y, 若 $x\in\overline{Y}$, 存在 Y 的子集 Z 使得 $|Z|\leq \lambda$ 且 $x\in\overline{Z}\}$. 若 $t(X)=\omega$,则称空间 X 有可数 tightness(countable tightness). 序列空间或遗传可分空间都有可数 tightness(练习 5.4.1).

空间 X 的 α -Lindelöf 数(α -Lindelöf number)定义为 α $L(X)=\omega$ +min{ $\lambda: X$ 的每一开 α 覆盖有基数不超过 λ 的 α 子覆盖}. 如果 α 由 X 的所以单点集组成,那么 X 的 α -Lindelöf 数 称为 X 的 Lindelöf 数(Lindelöf number),并且记为 L(X). X 是 Lindelöf 空间当且仅当 $L(X)=\omega$.

定理 5.4.1 (McCoy, Ntantu[1988])对于每一 $\{X, \alpha\}$ 有 $t(C_{\alpha}(X))=\alpha L(X)$.

证明 记 λ =t(C_{α} (X)),让 $\boldsymbol{\mathcal{U}}$ 是空间 X 的开 α 覆盖. 对于每一 $A \in \alpha$,存在 $U_A \in \boldsymbol{\mathcal{U}}$ 使得 $A \subset U_A$,选取 $f_A \in C(X)$ 使得 $f_A(A) = \{0\}$ 且 $f_A(X \setminus U_A) \subset \{1\}$. 若 V 是 \mathbb{R} 中 0 的邻域,则 $f_A \in [A, V]$. 令 $F = \{f_A : A \in \alpha\} \subset C_{\alpha}(X)$,那么零函数 $f_0 \in \overline{F}$. 因而存在 F 的子集 F 使得 $|F'| \leq \lambda$ 且 $f_0 \in \overline{F'}$. 令 $\boldsymbol{\mathcal{V}} = \{U_A : f_A \in F'\}$. 下面证明 $\boldsymbol{\mathcal{V}}$ 是 $\boldsymbol{\mathcal{U}}$ 的 α 子覆盖. 设 $A \in \alpha$,让 W = [A, (-1, 1)],则 W是 f_0 的邻域,于是存在 $B \in \alpha$ 使得 $f_B \in F' \cap W$. 对于每一 $x \in A$, $f_B(x) < 1$,如果

 $x \in X \setminus U_B$,则 $f_B(x)=1$,所以 $A \subset U_B$,因而 \mathcal{V} 是 \mathcal{U} 的 α 子覆盖且 $\mathcal{U} \le \lambda$. 这表明 $\alpha L(X) \le t(C_\alpha(X)).$

下面证明 $\operatorname{t}(\operatorname{C}_{\alpha}(\operatorname{X})) \leq \alpha \operatorname{L}(\operatorname{X})$,让 $\kappa = \alpha \operatorname{L}(\operatorname{X})$. 由定理 4.3.11 和引理 4.2.2,, $\operatorname{C}_{\alpha}(\operatorname{X})$ 是齐性空间,所以只须证明 $\operatorname{t}(\operatorname{C}_{\alpha}(\operatorname{X}), \operatorname{f}_{0}) \leq \kappa$.设 $\operatorname{G} \ \ \operatorname{E} \ \operatorname{C}_{\alpha}(\operatorname{X})$ 的子集且 $\operatorname{f}_{0} \in \operatorname{G}$.对于每一 $\operatorname{n} \in \mathbb{N}$ 和 $\operatorname{A} \in \alpha$,选取 $\operatorname{g}_{n,\operatorname{A}} \in \operatorname{G} \cap [\operatorname{A}, (-1/n, 1/n)]$,让 $\operatorname{W}(\operatorname{n}, \operatorname{A}) = \{\operatorname{x} \in \operatorname{X} : |\operatorname{g}_{n,\operatorname{A}}(\operatorname{x})| < 1/n\}$,则 $\operatorname{A} \subset \operatorname{W}(\operatorname{n}, \operatorname{A})$,所以集族 $\mathcal{W}_{n} = \{\operatorname{W}(\operatorname{n}, \operatorname{A}) : \operatorname{A} \in \alpha \}$ 是 X 的开 α 覆盖,于是 \mathcal{W}_{n} 有基数不超过 κ 的 α 子覆盖 \mathcal{V}_{n} . 定义 $\operatorname{G}' = \{\operatorname{g}_{n,\operatorname{A}} : \operatorname{n} \in \mathbb{N}, \operatorname{A} \in \alpha \text{ 且} \operatorname{W}(\operatorname{n}, \operatorname{A}) \in \mathcal{V}_{n} \}$. 显然, $\operatorname{G}' \subset \operatorname{G}, |\operatorname{G}'| \leq \kappa$. 对于每一 $\operatorname{n} \in \mathbb{N}$ 和 $\operatorname{B} \in \alpha$,存在 $\operatorname{A} \in \alpha$ 使得 $\operatorname{B} \subset \operatorname{W}(\operatorname{n}, \operatorname{A}) \in \mathcal{V}_{n}$,于是 $\operatorname{g}_{n,\operatorname{A}} \in [\operatorname{B}, (-1/\operatorname{n}, 1/\operatorname{n})] \cap \operatorname{G}'$,所以 $\operatorname{f}_{0} \in \operatorname{G}'$,从 而 $\operatorname{t}(\operatorname{C}_{\alpha}(\operatorname{X}), \operatorname{f}_{0}) \leq \kappa$. 故 $\operatorname{t}(\operatorname{C}_{\alpha}(\operatorname{X})) \leq \kappa$. \blacksquare

推论 5.4.2 (McCoy[1980b])空间 $C_k(X)$ 有可数 tightness 当且仅当 X 的每一开 k 覆盖有可数 k 子覆盖.

推论 5.4.3 (Arhangel'skiǐ[1976]-Pytkeev[1982] 定 理) 对 于 每 一 空 间 X, $t(C_p(X))=\sup\{L(X^n):n\in\mathbb{N}\}$. 特别地, $C_p(X)$ 有可数 tightness 当且仅当对于每一 $n\in\mathbb{N}$, 积空间 X^n 是 Lindelöf 空间.

证明 设存在基数 λ 使得对于每一 $n \in \mathbb{N}$, $L(X^n) \le \lambda$. 让 \mathcal{U} 是 X 的开 ω 覆盖. 对于每一 $n \in \mathbb{N}$, 让 $\mathcal{U}_n = \{U^n \subset X^n : U \in \mathcal{U}\}$, 由于 $\{x_1, x_2, ..., x_n\} \subset U$ 当且仅当 $(x_1, x_2, ..., x_n) \in U^n$,则 \mathcal{U}_n 是 X^n 的开覆盖. 设 \mathcal{U}_n 是 \mathcal{U}_n 的基数不超过 λ 的子覆盖,则 $\{U: 存在 \ n \in \mathbb{N}$ 使得 $U^n \in \mathcal{U}_n^n\}$ 是 \mathcal{U} 的基数不超过 λ 的 ω 子覆盖. 由定理 5.4.1, $t(C_p(X)) \le \lambda$.

反之,设 X 的每一开 ω 覆盖有基数不超过 κ 的 ω 子覆盖。对于每一 $n \in \mathbb{N}$,如果 \mathcal{U} 是 X 的开覆盖,让 $\mathcal{U} = \{V \subset X : V \in X \text{ 的开集} \exists V^n 被 \mathcal{U} \text{ 的有限个元覆盖}\}$,则 $\mathcal{U} \in X \text{ 的开} \omega$ 覆盖。事实上,设 $\{x_1, x_2, ..., x_m\} \subset X$,存在 $W_{i_i_2...i_m} \in \mathcal{U}$ 使得 $(x_{i_1}, x_{i_2}, ..., x_{i_m}) \in W_{i_i_2...i_m}$,其中每一 $i_j \in \{1, 2, ..., m\}$ 且 $j \leq m$,又存在 X 的开集 V_{i_j} 使得 $(x_{i_1}, x_{i_2}, ..., x_{i_m}) \in \Pi_{j \leq m} V_{i_j} \subset W_{i_ii_2...i_m}$. 对于每一 $k \leq m$,让 $V_k = \bigcap \{V_{i_j} : i_j = k\}$ 。令 $V = \bigcup_{k \leq m} V_k$,则 $V_k \in X$

是 X 的开集, $\{x_1, x_2, ..., x_m\} \subset V$ 且 $V^n \subset \bigcup \{\prod_{j \leq m} V_{i_j} : i_j \in \{1, 2, ..., m\}, j \leq m\} \subset \bigcup \{W_{i_1 i_2 ... i_m} : i_j \in \{1, 2, ..., m\}, j \leq m\}$. 因而 $\mathbf{1}$ 是 X 的开 $\mathbf{0}$ 覆盖,所以 $\mathbf{1}$ 有基数不超过 $\mathbf{1}$ 的 $\mathbf{0}$ 子覆盖, $\mathbf{1}$ "以 $\mathbf{1}$ ",于是 $\{V^n : V \in \mathbf{1}$ ",是 $\{V^n : V \in \mathbf{1}\}$ 是 $\{V^n : V \in \mathbf{1}\}$ 的基数不超过 $\{V^n : V \in \mathbf{1}\}$ 的基数不超过 $\{V^n : V \in \mathbf{1}\}$ 是 $\{V^n : V \in \mathbf{1}\}$ 是 $\{V^n : V \in \mathbf{1}\}$ 的基数不超过 $\{V^n : V \in \mathbf{1}\}$ 的基数不超过 $\{V^n : V \in \mathbf{1}\}$ 的基数不超过 $\{V^n : V \in \mathbf{1}\}$ 的表数不超过 $\{V^n : V \in \mathbf{1}\}$ 的子覆盖,故 $\{V^n : V \in \mathbf{1}\}$ 的表数不超过 $\{V^n : V \in \mathbf{1}\}$ 的子覆盖,故 $\{V^n : V \in \mathbf{1}\}$ 的表数不超过 $\{V^n : V \in \mathbf{1}\}$ 的子覆盖,故 $\{V^n : V \in \mathbf{1}\}$ 的表数不超过 $\{V^n : V \in \mathbf{1}\}$ 的子覆盖,故 $\{V^n : V \in \mathbf{1}\}$ 的子观,如 $\{V^n : V \in \mathbf{1}\}$ 的一个观 $\{V^n : V \in \mathbf{1}\}$ 的一个观

例 5.4.4 Sorgenfrey 直线(Sorgenfrey[1947]): Lindelöf 空间 S 使得 S 2 不是 Lindelöf 空间. 取 S 为实数集聚,以{[a, b): a, b \in S}为基生成 S 的拓扑称为右半开区间拓扑(right half-open interval topology), S 赋予右半开区间拓扑称为 Sorgenfrey 直线(Sorgenfrey line). 因为(a, b)= $\bigcup_{a < c < b}$ [c, b),所以聚的欧几里得开集是右半开区间拓扑的开集.显然,S 是第一可数的可分正则空间.

S是 Lindelöf 空间. 设{U_t}_t=T 是 S 的开覆盖. 每一 U_t 在 R 的 通常拓扑下的内部记为 U_t^*, 令 U= U_t=T U_t^*. 由于实数空间是遗传 Lindelöf 空间(即,每一子空间是 Lindelöf 空间),所以子空间 U 的开覆盖{U_t^*}_t=T 具有可数子覆盖{U_{t_i}^*}_t=N,置 F=S\U,则 F 是可数集. 事实上,对于每一 $a \in F$,存在 $t \in T$ 和 c < b 使得 $a \in [c,b) \subset U_t$,于是 a = c,并且存在 $b_a > a$ 使得(a,b_a) $\cap F = \emptyset$,从而{ $(a,b_a):a \in F$ }是 R 的 互不相交的开区间集,故 F 是可数的. 这表明{ U_t }_t=T 存在可数的子覆盖. 因

 S^2 不是Lindelöf 空间. 令 $E=\{(x,y)\in S^2: x+y=1\}$,则 E 是 S^2 不可数的闭离散子空间,所以 S^2 不是 Lindelöf 空间. 这时 S 是 cosmic 空间.

此, S 是 Lindelöf 空间.

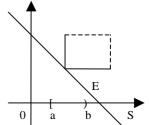


图 Sorgenfrey 直线 S 的积空间

由推论 5.2.5, C $_p$ (S)具有较粗的可分度量拓扑. 由推论 5.4.3, C $_p$ (S)不具有可数 tightness.

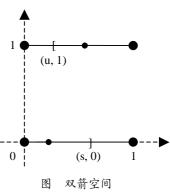
定理 5.4.5 (Asanov 定理[1983])对于每一空间 X, $\sup\{t(X^n): n \in \mathbb{N}\} \le L(C_p(X))$. 证明 设 $\lambda = L(C_p(X))$. 对于每一 $n \in \mathbb{N}$, 要证明 $t(X^n) \le \lambda$. 设 $x = (x_1, x_2, ..., x_n)$

 \mathbf{x}_n) \in \mathbf{A} \subset \mathbf{X}^n , 选取 \mathbf{X} 的开集 \mathbf{U}_1 , \mathbf{U}_2 ,... , \mathbf{U}_n 满足条件(*): 每一 $\mathbf{x}_i \in \mathbf{U}_i$, 且如果 $\mathbf{x}_i = \mathbf{x}_j$, 则 $\mathbf{U}_i = \mathbf{U}_i$; 如果 $\mathbf{x}_i \neq \mathbf{x}_i$, 则 $\mathbf{U}_i \cap \mathbf{U}_i = \emptyset$.

令 $\mathbf{U}=\prod_{i\le n}\mathbf{U}_i$,则 \mathbf{U} 是 \mathbf{x} 在 \mathbf{X}^n 中的开邻域. 由于 $\mathbf{x}\in\overline{\mathbf{A}\cap\mathbf{U}}$,不妨设 $\mathbf{A}\subset\mathbf{U}$. 置 $\mathbf{F}=\{\mathbf{f}\in\mathbf{C}_p(\mathbf{X}): \mathbf{f}(\mathbf{x}_i)=1, \ \forall i\le n\}$. 对于每一 $\mathbf{y}=(\mathbf{y}_1,\ \mathbf{y}_2,...,\ \mathbf{y}_n)\in\mathbf{A}$,让 $\mathbf{V}_y=\{\mathbf{g}\in\mathbf{C}_p(\mathbf{X}): \mathbf{g}(\mathbf{y}_i)>0, \ \forall i\le n\}$. 对于每一 $\mathbf{f}\in\mathbf{F}$, $\mathbf{i}\le n$, 让 $\mathbf{f}_i=\mathbf{f}$, 并令 $\phi_n=\prod_{i\le n}\mathbf{f}_i: \mathbf{X}^n\to\mathbb{R}^n$,则 ϕ_n 连续且 $\phi_n(\mathbf{x})=(1,1,...,1)$,因为 $\mathbf{x}\in\overline{\mathbf{A}}$,存在 $\mathbf{y}=(\mathbf{y}_1,\mathbf{y}_2,...,\mathbf{y}_n)\in\mathbf{A}$ 使得对于每一 $\mathbf{i}\le n$ 有 $\mathbf{f}(\mathbf{y}_i)>0$. 从 而 $\mathbf{F}\subset \bigcup_{y\in\mathbf{A}}\mathbf{V}_y$. 由于 \mathbf{F} 是 $\mathbf{C}_p(\mathbf{X})$ 的闭集,所以 $\mathbf{L}(\mathbf{F})\le\lambda$,存在 \mathbf{A} 的子集 \mathbf{B} 使得图 $\mathbf{B}\le\lambda$ 且 $\mathbf{F}\subset \bigcup_{y\in\mathbf{B}}\mathbf{V}_y$. 下面证明 $\mathbf{x}\in\overline{\mathbf{B}}$. 若不然,存在 \mathbf{X} 的开集族 $\{\mathbf{U}_i\}_{i\le n}$ 使得每一 $\mathbf{U}_i\subset\mathbf{U}_i$,($\prod_{i\le n}\mathbf{U}_i$) $\cap \mathbf{B}=\varnothing$ 且满足相应的条件(*). 由 \mathbf{X} 的完全正则性,存在 $\mathbf{g}\in\mathbf{C}_p(\mathbf{X})$ 使得 $\mathbf{g}\in\mathbf{F}$ 且 $\mathbf{g}(\mathbf{X}\setminus \bigcup_{i\le n}\mathbf{U}_i)$ $\subset \{0\}$,于是存在 $\mathbf{y}\in\mathbf{B}$ 使得 $\mathbf{g}\in\mathbf{V}_y$. 由于 $\mathbf{y}\in\mathbf{A}\subset\mathbf{U}$,所以 $\mathbf{y}_i\in\mathbf{U}_i$,又由于 $\mathbf{g}(\mathbf{y}_i)>0$ 且当 $\mathbf{x}_i\neq\mathbf{x}_j$ 时 $\mathbf{U}_i\cap\mathbf{U}_j=\varnothing$,所以 $\mathbf{y}_i\in\mathbf{U}_i$,从而 $\mathbf{y}\in(\prod_{i\le n}\mathbf{U}_i')\cap\mathbf{B}$,矛盾. 因此 $\mathbf{x}\in\overline{\mathbf{B}}$,故 $\mathbf{t}(\mathbf{X}^n)\le\lambda$. \blacksquare

Asanov(M. O. Асанов)定理中的不等号可能成立. 如, 让 X 是不可数的离散空间, 那么每一 $t(X^n)$ = ω ,但是 $C_p(X)$ = \mathbb{R}^X 不是 Lindelöf 空间(推论 6.1.3). 下述例子说明, 即使对第一可数的紧空间推论 5.4.3 的对偶命题也是不成立的.

例 5.4.6 双箭空间(Arhangel'skiǐ[1992]): 第一可数的紧空间 X 使得 $C_p(X)$ 含有不可数的闭离散子空间.



形如[x, (s+1/n, 0)]的开闭集. 于是 X 是第一可数空间的正则空间. 设 2 是空间 X 的开覆盖,

让 $Y = \{y \in X : [(0, 0), y]$ 被 **2** 有限覆盖 $\}$, $Y_0 = \{s \in \mathbb{I} : 存在 t \in \{0, 1\}$ 使得 $(s, t) \in Y\}$. 则 Y_0 是 I 的非空子集,设 u 是 Y_0 在 I 中的上确界,则(u, 0)或(u, 1)是 Y 在 X 中的上确界.这时必有(u, 1)=sup Y.再由点(u, 1)局部基的构造及 Y 的定义知,u = 1,从而 X 是紧空间.

对于每一 $s \in \mathbb{I}$,定义 $f_s: X \to \mathbb{R}$ 使得当 $x \le (s, 0)$ 时 $f_s(x) = 0$,当 $x \ge (s, 1)$ 时 $f_s(x) = 1$,则 f_s 连 续. 置 $S = \{f_s: 0 < s < 1\}$. $U_s = \{f \in C_p(X): \exists x \in \{(s, 0), (s, 1)\}$,则 $f_s(x) = f_s(x) = 1$,那么 U_s 是 f_s 在 $G_p(X)$ 中的开邻域且 $G_p(X)$ 中的开邻域且 $G_p(X)$ 中的极限点形如 $G_p(X)$ 有 $G_p(X)$ 的离散子空间。在点态收敛拓扑下, $G_p(X)$ 中的极限点形如 $G_p(X)$ 有 $G_p(X)$ 的时 $G_p(X)$ 的 $G_p($

空间 X 的扇 tightness(fan tightness, Arhangel'skii[1986])定义为 $ft(X)=\sup\{ft(X,x):x\in X\}$, 其中 X 在 x 的扇 tightness 是 $ft(X,x)=\omega+\min\{\lambda: 对于 X$ 的子集列 $\{A_n\}$ 和 $x\in\bigcap_{n\in\mathbb{N}}\overline{A_n}$,存在 A_n 的基数小于 λ 的子集 B_n (\forall $n\in\mathbb{N}$)使得 $x\in\overline{\bigcup_{n\in\mathbb{N}}B_n}$ }. 称空间 X 有可数扇 tightness(countable fan tightness),如果 $ft(X)=\omega$. Arhangel'skii[1986]把扇 tightness 的基数函数记为 vet(X).

显然, $t(X) \le ft(X) \le \chi(X)$. 对于序列扇 S_{ω} , $t(S_{\omega}) = \aleph_0 < ft(S_{\omega})$.

定理 5.4.7 对于每一 $\{X, \alpha\}$ 下述条件相互等价:

- (1) C_a(X)有可数扇 tightness;
- (2) $C_{\alpha}^{\omega}(X)$ 有可数扇 tightness;
- (3) X 的每一开 α 覆盖列 $\{u_n\}$, 存在 u_n 的有限子集 $u_n'(\forall n \in \mathbb{N})$ 使得 $\bigcup_{n \in \mathbb{N}} u_n' \in X$ 的 α 覆盖.

证明 (1)⇒(3). 设{ $\boldsymbol{\mathcal{U}}_n$ }是空间 X的开 α 覆盖列. 对于每一 $\mathbf{n} \in \mathbb{N}$, 让 $\mathbf{A}_n = \{\mathbf{f} \in \mathbf{C}_\alpha (\mathbf{X}) :$ 存在 $\mathbf{U} \in \boldsymbol{\mathcal{U}}_n$ 使得 $\mathbf{f}(\mathbf{X} \setminus \mathbf{U}) \subset \{0\}\}$, 则 \mathbf{A}_n 是 $\mathbf{C}_\alpha (\mathbf{X})$ 的稠密子集. 事实上,对于 $\mathbf{C}_\alpha (\mathbf{X})$ 的任一非空基本开集 $\bigcap_{i \leq m} [\mathbf{K}_i, \mathbf{V}_i]$,取定 $\mathbf{f} \in \bigcap_{i \leq m} [\mathbf{K}_i, \mathbf{V}_i]$,因为 $\boldsymbol{\mathcal{U}}_n$ 是 \mathbf{X} 的 α 覆盖,存在 $\mathbf{U} \in \boldsymbol{\mathcal{U}}_n$ 使得 $\bigcup_{i \leq m} \mathbf{K}_i \subset \mathbf{U}$. 由引理 4.5.5,存在 $\mathbf{g} \in \mathbf{C}_\alpha (\mathbf{X})$ 满足 $\mathbf{g}_{\bigcup_{i \leq m} \mathbf{K}_i} = \mathbf{f}_{|\bigcup_{i \leq m} \mathbf{K}_i}$ 且 $\mathbf{g}(\mathbf{X} \setminus \mathbf{U}) \subset \{0\}$,则

 $g \in A_n \cap (\bigcap_{i \le m} [K_i, V_i]).$

取定 $f_1 \in C_\alpha(X)$ 使得 $f_1(X)=\{1\}$,则 $f_1 \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$,由于 $C_\alpha(X)$ 有可数扇 tightness,存在每一 A_n 的有限子集 B_n 使得 $f_1 \in \overline{\bigcup_{n \in \mathbb{N}} B_n}$,记 $B_n = \{f_{n,j}\}_{j \leq i(n)}$,存在 $U_{n,j} \in \mathcal{U}_n$ 使得 $f_{n,j}(X \setminus U_{n,j}) \subset \{0\}$,再记 $\mathcal{U}_n = \{U_{n,j}\}_{j \leq i(n)}$. 下面证明 $\bigcup_{n \in \mathbb{N}} \mathcal{U}_n$ 是 X 的 α 覆盖. 对于每一 $A \in \alpha$,因为 $f_1 \in [A, (0, 2)]$,存在 $n \in \mathbb{N}$, $j \leq i(n)$ 使得 $f_{n,j} \in [A, (0, 2)]$,则 $A \subset U_{n,j}$,所以 $\bigcup_{n \in \mathbb{N}} \mathcal{U}_n$ 是 X 的 α 覆盖.

(3) \Rightarrow (2). 由定理 4.5.18, $C_{\alpha}^{\omega}(X, \mathbb{R})$ 同胚于 $C_{\alpha}(X, \mathbb{R}^{\omega})$, 所以只须证明 $C_{\alpha}(X, \mathbb{R}^{\omega})$ 有可 数扇 tightness. 由定理 4.3.11 和引理 4.2.2, $C_{\alpha}(X, \mathbb{R}^{\omega})$ 是齐性空间, 因而又只须证明 $C_{\alpha}(X, \mathbb{R}^{\omega})$ \mathbb{R}^{ω})在点 f_0 (零函数)有可数扇 tightness. 设 $f_0 \in \bigcap_{n \in \mathbb{N}} \overline{A}_n$, 其中每一 $A_n \in C_{\alpha}(X, \mathbb{R}^{\omega})$ 的子 集. 对于每一 $n \in \mathbb{N}$, 置 $\mathcal{U}_n = \{f^{-1}(O_n) : f \in A_n\}$, 其中 $\{O_n\}_{n \in \mathbb{N}}$ 是 \mathbb{R}^{ω} 中点 O = (0, 0, ...)的可 数递减的局部基,则 \mathcal{U}_n 是X的开 α 覆盖.事实上,对于每一A $\in \alpha$,f₀ \in [A,O_n],于是存在 $f \in [A, O_n] \cap A_n$, 从而 $A \subset f^{-1}(O_n)$. 置 $M = \{n \in \mathbb{N} : X \in \mathcal{U}_n\}$. 若 M 是无限集, 对于 f_0 的任 一基本邻域[A, V],存在 m \in M 使得 $O_m \subset V$,由 \mathcal{U}_m 的构造,存在 $g_m \in A_m$ 使得 $X = g_m^{-1}(O_m)$, 从而 $g_m(X) \subset O_m$,于是 $g_m \in [A, V]$,故 $C_\alpha(X, \mathbb{R}^\alpha)$ 中的序列 $\{g_m\}_{m \in M}$ 收敛于 f_0 ,故命题成 立. 若 M 是有限集,则存在 $n_0 \in \mathbb{N}$ 使得当 $m \ge n_0$ 时,对于每一 $g \in A_m$ 有 $g^{-1}(O_m) \ne X$. 而 $\{\mathcal{U}_m\}_{m\geq n_0}$ 是X的开 α 覆盖列,由假设,存在 \mathcal{U}_m 的有限子集 \mathcal{U}_m 使得 $\bigcup_{m\geq n_0}\mathcal{U}_m$ 是X的开 α 覆盖. 记 $\mathcal{U}_{m}^{'}=\{\mathbf{U}_{m,j}\}_{j\leq i(m)}$, 那么存在 $\mathbf{f}_{m,j}\in\mathbf{A}_{m}$ 使得 $\mathbf{U}_{m,j}=\mathbf{f}_{m,j}^{-1}(\mathbf{O}_{m})$. 下面证明 $\mathbf{f}_{0} \in \overline{\{\mathbf{f}_{m,j}: m \geq \mathbf{n}_{0}, \, \mathbf{j} \leq \mathbf{i}(m)\}}$. 对于 \mathbf{f}_{0} 的任一基本邻域[A, V], 让 H= $\{(\mathbf{m}, \, \mathbf{j}) \in \mathbb{N}^{2} : \, \mathbf{m} \geq \mathbf{n}_{0}, \, \mathbf{j} \leq \mathbf{n}_{0}\}$ $j \le i(m)$ 且 A ⊂ U_{m,j} }. 显然 H ≠ Ø. 若 H 是有限集, 对于每一(m, j)∈H, 因为 U_{m,j} ≠ X, 取 $\mathbf{x}_{m,j} \in \mathbf{X} \setminus \mathbf{U}_{m,j}$. 则存在 $\mathbf{K} \in \alpha$ 使得 $\mathbf{A} \cup \{\mathbf{x}_{m,j} : (\mathbf{m}, \mathbf{j}) \in \mathbf{H}\} \subset \mathbf{K}$, 那么 $\bigcup_{m \geq n_0} \mathbf{\mathcal{U}}_m$ 中不存在元 素含有 K, 这与 $\bigcup_{m \geq n_0} \mathcal{U}_m$ 是 X 的 α 覆盖相矛盾. 于是 H 是无限集, 因而存在 $m \geq n_0$, $j \leq i(m)$ 使得 $A \subset U_{m,j} = f_{m,j}^{-1}(O_m)$ 且 $O_m \subset V$, 于是 $f_{m,j}(A) \subset V$, 即 $f_{m,j} \in [A, V]$, 所以

 $f_0 \in \{f_{m,j} : m \ge n_0, j \le i(m)\}$.

由闭遗传性质知(2)⇒(1)是显然的. ■

定理 5.4.7 关于紧开拓扑的情形见林寿, 刘川和滕辉[1994]. 下面继续讨论可数扇 tightness 的推广. 称空间 X 有可数强扇 tightness(countable strong fan tightness, Sakai(酒井政美)[1988]), 如果对于每一 $x \in X$ 及 X 的子集列 $\{A_n\}$ 使得 $x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$, 存在 $x_n \in A_n$ ($\forall n \in \mathbb{N}$)使得 $x \in \overline{\{x_n : n \in \mathbb{N}\}}$.

显然,第一可数空间有可数强扇 tightness,可数强扇 tightness 是可数扇 tightness. **定理 5.4.8** 对于每一 $\{X, \alpha\}$ 下述条件相互等价:

- (1) C_α(X)有可数强扇 tightness;
- (2) $C_{\alpha}^{\omega}(X)$ 有可数强扇 tightness;
- (3) X 的每一开 α 覆盖列 $\{u_n\}$,存在 $U_n \in u_n (\forall n \in \mathbb{N})$ 使得 $\{U_n\}_{n \in \mathbb{N}}$ 是X的 α 覆盖.

证明 (1)⇒(3). 设{ \mathcal{U}_n }是空间 X的开 α 覆盖列. 对于每一 $n \in \mathbb{N}$,置 $A_n = \{f \in C_\alpha(X):$ 存在 $U \in \mathcal{U}_n$ 使得 $f(X \setminus U) \subset \{0\}\}$,则 $\overline{A}_n = C_\alpha(X)$ (见定理 5.4.7 中(1)⇒(3)的证明). 令 $h \in X$ 上取值恒为 1 的常值函数,则 $h \in \bigcap_{n \in \mathbb{N}} \overline{A}_n$. 由于 $C_\alpha(X)$ 有可数强扇 tightness,存在 $f_n \in A_n(\forall n \in \mathbb{N})$ 使得 $h \in \overline{\{f_n : n \in \mathbb{N}\}}$,又由 A_n 的定义,存在 $U_n \in \mathcal{U}_n$ 使得 $f_n(X \setminus U_n) \subset \{0\}$. 对于每一 $A \in \alpha$,因为 $h \in [A, (0, 2)]$,存在 $m \in \mathbb{N}$ 使得 $f_m \in [A, (0, 2)]$,则 $A \subset U_m$,所以 $\{U_n\}_{n \in \mathbb{N}}$ 是 X的 α 覆盖.

(3) ⇒(2). 只须证明 $C_{\alpha}(X, \mathbb{R}^{\omega})$ 在点 $f_{0}($ 零函数)有可数强扇 tightness. 设{ A_{n} }是空间 $C_{\alpha}(X, \mathbb{R}^{\omega})$ 的子集列且 $f_{0} \in \bigcap_{n \in \mathbb{N}} \overline{A}_{n}$. 对于每一 $n \in \mathbb{N}$,置 $\mathcal{U}_{n} = \{f^{-1}(O_{n}) : f \in A_{n}\}$,其中 $\{O_{n}\}_{n \in \mathbb{N}}$ 是 \mathbb{R}^{ω} 中点 O=(0,0,...)的可数递减的局部基,则 \mathcal{U}_{n} 是X 的开 α 覆盖. 置 $M=\{n \in \mathbb{N}: X \in \mathcal{U}_{n}\}$. 若 M 是无限集,对于 f_{0} 的任一基本邻域[A,V],存在 $m \in M$ 使得 $O_{m} \subset V$,由 \mathcal{U}_{m} 的构造,存在 $g_{m} \in A_{m}$ 使得 $X=g_{m}^{-1}(O_{m})$,从而 $g_{m}(X) \subset O_{m}$,于是 $g_{m} \in [A,V]$,故 $C_{\alpha}(X)$ 中 的序列 $\{g_{m}\}_{m \in M}$ 收敛于 f_{0} . 若 M 是有限集,则存在 $n_{0} \in \mathbb{N}$ 使得当 $m \geq n_{0}$ 时,对于每一

 $g \in A_m$ 有 $g^{-1}(O_m) \neq X$. 而 $\{\mathcal{U}_m\}_{m \geq n_0}$ 是 X 的开 α 覆盖列,由假设,存在 $U_m \in \mathcal{U}_m$ 使得 $\{U_m\}_{m \geq n_0}$ 是 X 的开 α 覆盖.那么存在 $f_m \in A_m$ 使得 $U_m = f_m^{-1}(O_m)$. 下面证明 $f_0 \in \overline{\{f_m : m \geq n_0\}}$. 对于 f_0 的任一基本邻域[A, V],让 $\mathcal{U} = \{U_m : A \subset U_m, m \geq n_0\}$. 显然 $\mathcal{U} \neq \emptyset$.若 \mathcal{U} 是有限集,设 $\mathcal{U} = \{U_{m_j} : j \leq k\}$,对于每一 $j \leq k$,因为 $U_{m_j} \neq X$,取 $X_{m_j} \in X$ U_{m_j} .则存在 $K \in \alpha$ 使得 $A \cup \{x_{m_j} : j \leq k\} \subset K$,那么 $\{U_m\}_{m \geq n_0}$ 中不存在元素含有 K,这与 $\{U_m\}_{m \geq n_0}$ 是 X 的 α 覆盖相矛盾.于是 \mathcal{U} 是无限集,因而存在 $M \geq n_0$ 使得 $A \subset U_m$ 且 $O_m \subset V$,于是 $A \subset U_m = f_m^{-1}(O_m)$,所以 $f_m(A) \subset O_m$,从而 $f_m \in [A, O_m] \subset [A, V]$,故 $f_0 \in \overline{\{f_m : m \geq n_0\}}$.

由闭遗传性质知(2)⇒(1)是显然的. ■

定理 5.4.8 关于点态收敛拓扑的情形见 M. Sakai[1988],关于紧开拓扑的情形见林寿,刘川[1993].

练习

- 5.4.1 序列空间或遗传可分空间都有可数 tightness.
- **5.4.2** 证明: 函数空间 $C_p(X)$ 有可数 tightness 当且仅当积空间 $C_p^{\omega}(X)$ 有可数 tightness.
- **5.4.3** 设 X 是第二可数空间,证明: $C_{k}(X)$ 有可数 tightness.
- **5.4.4** 函数空间 $C_{\alpha}(X)$ 有可数强扇 tightness 当且仅当对于每一 $f \in C_{\alpha}(X)$ 及 $C_{\alpha}(X)$ 中递减的集列 $\{A_n\}$,若 $f \in \bigcap_{n \in \mathbb{N}} \overline{A}_n$,则存在 $f_n \in A_n$ ($\forall n \in \mathbb{N}$)使得 $f \in \overline{\{f_n : n \in \mathbb{N}\}}$.