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POINT-COUNTABLE k-NETWORKS,
cs*-NETWORKS AND o,-SPACES!

PENGFEI YAN AND SHOU LIN?*

ABSTRACT. In this paper the authors give the relations
between point-countable k-networks and cs*-networks by
virture of a4-spaces, and prove some mapping theorems
on spaces with point-countable p-k-networks.

Since Burke, Gruenhage, Michael and Tanaka[3,4,7,20] es-

tablished the fundamental theory on point-countable covers
in generalized metric spaces, many topologists have discussed
the point-countable covers with various characters. Mean-
while, the conceptions of k-networks, cs*-networks and p-k-
networks were introduced. The study for relations among cer-
tain point-countable covers has become one of the most 1m-
portant subjects in general topology. In this paper, we shall
consider the connections between point-countable k-networks
and cs*-networks, prove that a4-spaces with point-countable k-
networks have point-countable cs*-networks, and obtain some
closed mapping theorems about spaces with point-countable
p-k-networks, which generalized some results in {7,13,14].
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In this paper, all spaces are assumed to be regular and 77,
and all mappings are continuous and surjective. We recall some

basic definitions.

Definition 1. Let X be a space, and P a cover of X. Put

(1)
(2)
(3)

P ={P CP:|P|<w}

P is a k-network |15} if, whenever K C U with K compact
and [/ open in X, then K C UF C U for some F € P<¥.
P is a p-k-network [7] if, whenever K C X\{y} with K
compact in X, then K C UF C X\{y} for some F € P=¥
P is a cs*-network [6] if {z,} is a sequence converging
to z € X and U is a neighborhood of z, there exists a
P € P such that {z} U {x, :2€ N} C P C U for some
subsequence {z,, } of {z,}.

P is a wes*-network [11] if {z,} is a sequence converging
to z € X and U 1s a neighborhood of z, there exists a
P € P such that {z,, : 1 € N} ¢ P C U for some
subsequence {z,, } of {z,}

P is a p-wes*-network if {z,} is a sequence converging
to x € X and y # x, there exists a P € P such that
{z,.,:2 € N} C P C X\{y} for some subsequence {z,, }

of {z,}:

p-k-networks were studied in {7|, where they were labeled
(1.4),. cs*-networkis, wes*-networks, p-k-networks and p-wes™-
networks were studied in [20], where they were labeled (C,),

(C2), (C3} and (C3)’ respectively.

Definition 2. [9] Call a subspace of a space a fan (at a point
r) 1f it consists ol a point z, and a countably infinite family
of disjoint sequences converging to z. Call a subset of a tan a
diagonal it 1t 1s a convergent sequence meeting infinitely many
of the sequences converging to r and converges to some point
in the fan.

(1) A space X is an ay-space 2] if every fan at z of X has a

diagonal converging to x.

(2) S, 1s a fan without a diagonal.
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Definition 3. [5] For a space X and ¢ € P C X, P 1s a
sequential neighborhood at z in X if, whenever {z,} is a se-
quence converging to z in X, then z, € P for all but hnitely

many n € V.

Definition 4. Let P = U{P, : « € X} be a family of subsets
of X which satishes that for each z € X,

(1) P, 1s a network of = in X,
(2) YU,V € Py, then W CUNYV for some W € P,.

P 1s an sn-network|19] for X if each element of P, is a sequen-
tall neighborhood of z in X. P is a weak base [1] for X if.
whenever (G 1s subset of X such that foreach z € G, P C G
for some P € P,, then G is open in X. A space X is an sn f-
countable space 1f X has an sn-ntework P such that each P, is

countable. A space X is a ¢ f-countable space if X has a weak
base P such that cach P, i1s countable.

We introduce the following symbols. For a subset collection
F of a space X, let Int,(F) = {z : UF is a sequential neigh-
borhood at  in X}. A subset collection F of X is an sn-cover
of Aif A CInt,(UF). For a cover P of a space X, put

(A): If £ € U € 7(X), there exists F € P<% such that
z €lnt,(UF) CUF C U.

(B): If z € U € 7(X), there exists F € P<% such that
z €Int,(UF) CUF C U, and z € NF.

It 1s clear that [9] gf-countable spaces = snf-countable
spaces = ay4-spaces = spaces without any closed copy of S,
and that
weak base = sn-network = (B) = cs*-network

U \

(A) = wcs*-network < k-network

I -

p-wces*-network < p-k-network.
It 1s well known that for a space X,
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(1) X has a point-countable weak base < X is a g f-countable
space with a point-countable sn-network = X has a point-
countable k-network|[11].

(2) X has a point-countable sn-network % X has a point-
countable p-k-network, for example, the Stone-Cech com-
pactification SN,

(3) X has a point-countable cs*-network % has a point-
countable cover satisfying (A), for example, S, .

(4) X has a point-countable cs*-network % X has a point-
countable cs*-network, or X has a point-countable cover
satisfying (A), for example, S, [20].

(5) X has a point-countable p-k-network % X has a point-
countable wcs*-network, for example, let ¥* be the well
known Mrowka’s space. Then ¥* i1s a Moore space without
any point-countable base. A Moore space has a point-
countable p-k-network by Corollary 3.8 in [7].

In this paper we shall further study the relations among point-
countable covers satisfying the conditions above.

Lemma 5. Let X be an ay-space, and P a point-countable
wes*-network, then P has (A).

Proof: Suppose the conclusion is false for some z € U € 7(X).

For each countable C C U, let P(C) = {P € P: PNC #
@, P C U} — {Pz(C) 1 € N} Put Cg — {IE}, then Pl(CO) 1S
not a sequential neighborhood at z. There exists a sequence
{1} 1In U\ P1(Cyp) converging to z. Let Cy = {zy, : n € N},
as P 1s a wes*-network of X, there 1s an ny € N and an
infinite subet Cy" of C} such that C] € U{P;(C;) : 1 <1 <
n1,0 < 3 < 1}. Without losing generality, we can suppose
C; = Cy, then U{FP(C;) : 1 <1< nq,0 £ 5 <1} is not a
sequential neighborhood at x. Repeating the process above,
we can 1nductively choose C,, = {z,, : n € N} C U such
that {z,,, } converges to x for each m € N, and an increasing
sequence {n,} with C,, C U{F(C;) : 1 <1< n,,1 <5<
miI\U{P(C;) : 1 <1 < np-1,0 <53 <m—1}. The last
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condition implies that each P € P meets only finitely many
Con.

Let S = {zpm : m € Nyn € N} U {z}, then 5 1s a fan
at the point z. Because X i1s an ay4-space, S has a diagonal
converging to z, thus we can ind P € P and P C U such that
P meets infinitely many C),, a contradiction.

The following Lemma is similar to Mis¢enko’s Lemma [16].

Lemma 6. [fP s a point-countable cover of a space X, then
every A C X has only countably many minimal finite sn-covers
by elements of P.

Proof: For every F € P<¥ let H(F) = {H C X : F is
a minimal sn-cover of H}. If there are uncountable many
F € P<¥ such that A € H(F), then we can choose an m € N
and an uncountable subset A of P<“ such that |F| = m and
A € H(F) for every F € A.

Suppose R is a maximal subset of P satisfying R C F for
uncountably many F € A, then 0 < [R| < m. Let ' =
{(FeA:RCF} UIFerTl, A Inty(UR). Choosing
z € A\Ints(UR), them there exists a sequence {z,} converging
to = such that all z,, € UR. Let L = {z, : n € N}, then L
meets an element of . Because P is point-countable and T
i1s uncountable, we can obtain P € P such that LN P # ¢
and, uncountably many elements of I' contain P, so P € R and
uncountably many elements of I' contain R'U {P}. The. last
condition implies a contradiction.

Theorem 7. The following are equivalent for a space X:

(1) X has a point-countable cover satisfying (A).

(2) X has a point-countable cover satisfying (B).

(3) X is an ay-space (or an sn f-countable space) with a point-
counlable cs*-network.

(4) X 1is an «ay-space (or an sn f-countable space) with a point-

countable wes*-network.

Proof: (2) = (3) = (4) is obvious, and (4) = (1) holds by
Lemma 3, We only need to show that (1) = (2). Let P be a
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point-countable cover satisfying (A). For each F € P<¥, put
M(F) = {z € X : UF is a minimal sn-cover of {z}}. It
follows from Lemma 6 that if z € X, then z € M(F) for only
countable many F € P<“. For each P € P, let

P'=PU(U{M(F): FeP“ PeF}.

Then P’ C P. In fact, for every £ € M(F) and P € F,
then z €lnt (UF), while z €Int,(U(F\{P})), so there exists a
sequence in P converging to z. Thus z € P, then P’ C P.

Let P ={P': P& P} Foreveryz e X, put A, = U{F €
P<¥ .z € M(F)}, then A, is countable. Since z € P' & x €
Porz e M(F)with P € F,and P € A,, P’ is point-countable

For every z € W € 7(X), there exists U € 7(X) such
that x € U ¢ U ¢ W. Choosing Fo € P<% such that z €
Int;(UFy) C Fo C U. We can suppose ¢ € M(Fy). Let
Fo=A{P : P € Fy}, then x € P’ for every P’ € F;. On the

other hand, r € UF, C UF, C U C W. P’ satisfies (B).

Now, we give two interesting corollaries about Theorem 7.
In view of Proposition 1.2 and Remark 1.3 in |20}, we have

Lemma 8. Let P be a point-countable cover of X, then P is
a k-network (or a p-k-network) if and only if it is a wes*-
network(or a p-wcs*-network), and every compact subset of X
15 sequentially compact.

Corollary 9. For an a4-space X, the following are equivalent:

(1) X has a point-countable k-network.
(2) X has a point-countable cs*-network, and each compact
subset of X s sequentially compact.

Corollary 10. The following are equivalent for a k-space X |
with a point-countable k-network: -

(1) X s an a4-space

(2) X contains no closed copy of S,.
(3) X s an snf-countable space.

(4) X is a gf-countable space.



POINT-COUNTABLE k-NETWORKS, ¢s*™-NETWORKS 351

Proof: (1) & (4) & (3) by Theorem 3.13 in [9] and Theorem
7, and (1) < (2) by Corollary 3.9 in [9].

Remark 11. Burke and Michael [3,4] proved that for a space
X the following are equivalent:

(1) X has a point-countable base.

(2) X has a point-countable cover P such that, if z € U €
7(X), there exists F € P<* such that z € (UF)? CUF C
U, and z € NF. _

(3) X 1s a k-space with a point-countable cover P such that,
if x € U € 7(X), there exists F € P<“ such that x €
(UF)P CUF CU.

But a space with a point-countable cover satisfying (B) can
not be a space with a point-countable sn-network. By Remark
14(2) in [11], a gf-countable space X with a point-countable
k-network (hence a space with a point-countable cover satisfy-
ing (B)) # X has a point-countable sn-network. By Half-Disk
Topology in [19, Example 78], there is a first countable and T5-
space X with a point-countable cover satistying (A) such that
X has not any point-countable e¢s*-network, thus it shows that
the regularity of the space in Theorem 7 1s essential. Corol-
lary 9 partly answers the following question posed by Chuan
Liu[12]: Is a Fréchet space with a point-countable k-network
which contains no closed copy of S, a space with a point-
countable cs*-network? Corollary 10 improves Theorem 1 in
113] and Theorem 20 in {14}, and affirmatively answers the fol-
lowing question posed by Liu and Tanaka in [14]: Is a k-space
with a o-compact-finite k-network a ¢f-countable space if it
contains no closed copy of 5,7

Finally, we shall prove some closed mapping theorems on
spaces with point-countable p-k-networks. It 1s well known
that spaces with point-countable p-k-networks are preserved
by perfect maps[7].
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Theorem 12. Let f : X — Y be a closed map such that X
has a point-countable p-k-network, if one of the following holds,
then Y has a point-countable p-k-network.

(1) X 1s a k-space.

(2) Fach point of X s a Gs-set.

(3) X is a normal, isocompact space.

(4) FEach Bf~'(y) ts Lindelof.

Proof: We only prove the result for (1), the other proof is
similar to [11]. We note that every compact subset of X 1s
metrizable in view of Lemma 8. If (1) holds, then X is a
sequential space. By Lemma 2 in [11], each compact subset
of Y is sequentially compact. So it sufhices to show that Y
has a point-countable p-wes*-network by Lemma 8. Let P be
a point-countable p-k-network of X. For each y € Y, choose
z, € f1(y) and put A = {z, :y € Y},P* = {f(ANP)
P € P}, then P* is a point-countable cover of Y. Let'S =
{yn : n € N} be a sequence converging to y € Y,z # y and
all v, # z. Choosing z, € f~'(y.) N A, ' € f7'(2) N A, and
z € f~'(y)N A. Then there exists a convergent subsequence
T of {z,} in X\{z'}[11]. P is a p-k-network for X, hence we
can find out a P € P and a subsequence Z of T such that
Z C P cC X\{z'}, and f(Z) C f(PNA) C Y\{z}, so this

shows that P* is a point-countable p-wcs*-network for Y.

Corollary 13. Let f : X — Y be a closed map with Lindelof
fibres such that X has a point-countable p-k-network, then Y
has a point-countable p-k-network.

Remark 14. M. Sakai{l17] showed that there is a closed map
from a space X in which every compact subset 1s finite onto
the one-point compactification Y of w;. That X has a point-
countable k-network, and Y has not a point-countable p-k-
network. Let f : X — Y be a map. f 1s a compact-covering
map if each compact subset of YV is the image of some compact
subset of X. Let f : X — Y be a closed map. If X 1s a
normal, isocompact space or each Bf~'(y) 1s Lindelof, then f
is a compact-covering map [11]. If X has a point-countable
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k-network, and X is a k-space or each point of X 1s a Gs-set,
then f is also a compact-covering map|10,18]. But, if X has a
point-countable p-k-network, and X is a k-space or each point
of X 1s a Gs-set, then f can not be a compact-covering map.
In fact, let ¥b* be the Mrowka’s space. Then taking f :¢¥* — §
where f maps all the nonisolated points of ¥* into a single

point one obtains a closed mapping of a Moore space onto a
convergent sequence which is not compact-covering|10].
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