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Abstract 

In this paper we discuss the spaces containing a subspace having the Arens’ space or sequential 
fan as its sequential coreflection. A sequential coreflection of a space which is weakly first-countable 
is characterized, and some generalized metric spaces which contain no Arens’ space or sequential 
fan as its sequential coreflection are studied. 0 1997 Elsevier Science B.V. 
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1. Introduction 

g-metrizable spaces and N-spaces play an important role in metrization theory. We 

know that every metric space is a g-metrizable space, and every g-metrizable space is an 

N-space. Further relationships among these spaces can be characterized by the canonical 

quotient spaces which are Arens’ space & and sequential fan S(w). For example, 

Theorem 1.1 [201. A space is a metrizable space ifand only ifit is a g-metrizable space 
containing no (closed) copy of S,. 

Theorem 1.2 [ 111. A space is a g-metrizable space if and only if it is a k and N-space 
containing no (closed) copy of S(w). 

Using these concrete spaces ,572 and S(w) we can analyze the gaps among some 

generalized metric spaces. Spaces containing a copy of S’z or S(w) and their applications 
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have been studied in [11,14-17,201. Since S’2 and S(w) are all sequential spaces, this 

encourages us to discuss the spaces containing a subspace having Sz or S(w) as its 

sequential coreflection and those which do not. We obtain that 

Theorem 1.3. A regular space has a u-locally jinite sequentially open network if and 
only ifit has a a-locally$nite universal cs-network contains no (closed) subspace having 

S, as its sequential core$ection (Corollary 2.9). 

Theorem 1.4. A regular space has a u-locally Jinite universal es-network if and only if 

it has a o-locally jinite es-network and contains no (closed) subspace having S(w) as 

its sequential corejection (Theorem 3.15). 

Theorem 1.5. ~~~~ose X is a quotient s-image of a metric space. X has a point- 

countable base if and only if X contains no (closed) copy of 5’2 and S(w) (Corol- 

lary 3. IO). 

In this paper all spaces are T2, N denotes the set of all natural numbers. The Arens’ 

space Sz [lf and sequential fan S(w) [5] are defined as follows, Let Ta = (a,: n E 

N} be a sequence converging to x $ To and let each T, (n E N) be a sequence 

converging to a, $ T,. Let T be the topological sum of {T, U {a,}: n E N}. Thus 

S, = {x} u (U{Tn: n 2 0)) is a quotient space obtained from the topological sum of To 

and T by identifying each oB E TO with a, E T. Also, S(w) = {x} U (U{Tn: n E ni}) 
is a quotient space obtained from T by identifying all the points a, E T to the point z. 

2. On the Arens’ space SZ 

For a space X and x E P c X, P is a sequential barrier at x if, whenever {xn} 

is a sequence converging to x in X, then zn E P for all but finitely many n E N; 

equivalently, 2, E P for infinitely many n E N. P is sequentially open in X if P is a 

sequential barrier at each of its points, and is sequentially closed in X if its complement 

is sequential open. 

A space X is called a sequential space [7] if each sequentially open subset of X is 

open in X. Thus the topology is naturally definable using convergent sequences, and two 

sequential topologies on the same set X are the same if and only if they have the same 

convergent sequences. Each space (X, r) has a sequential corejlection, which we denote 

(X, a,) or aX if there is no danger of confusion. As is well known, aX is a sequential 

space, and l3 E rr, if and only if B is sequentially open in X; also, X and aX have the 

same convergent sequences. 

Definition 2.1. Call a subspace of a space a comb (at a point z) if it consists of a point 

z, a sequence (2,) converging to 2, and disjoint sequences converging individually to 

each x,. Call a subset of a comb a diagonal if it is a convergent sequence meeting 
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infinitely many of the sequences converging to the individual zn and converges to some 

point in the comb. 

S2 is comb without a diagonal. 

Lemma 2.2. For a space X, (TX is homeomorphic to & if and only if X is a comb 

without a diagonal. 

Proof. Suppose aX is homeomorphic to S2. Since OX and X have the same conver- 

gent sequences and S2 is a comb without a diagonal, X is a comb without a diagonal. 

Conversely, suppose X is a comb without a diagonal. Since aX is sequential, aX is 

homeomorphic to S2. 0 

A space X is called a Frechet space [7] (or a Frechet-Urysohn space) if, whenever 

5 E clx (A), there is a sequence in A converging to J: in X. Every FrCchet space 

is sequential, and the sequential space S2 is not Frechet. To characterize the FrCchet 

property of the sequential coreflection of a space, we introduce the following notations. 

For a space X and A c X, define that 

cl,(A) = cl,x(A), 

CL(A) = {z E X: there is a sequence in A converging to z}. 

The following is well known and easy to show. 

Lemma 2.3. The following are equivalent for a space X: 

(1) OX is a Frechet space. 

(2) cl,(A) = cls(A) for each A c X. 

(3) cl,(A) is sequentially closed in X for each A c X. 

It is easy to see from this that aX is a Frechet space if and only if every sequential 

barrier at any point x in X contains a sequentially open subspace containing x. 

Theorem 2.4. The following are equivalent for a space X: 

(1) aX is a Fre’chet space. 

(2) Every comb at x of X has a diagonal converging to x for each x E X. 

(3) Every comb of X has a diagonal. 

(4) X contains no subspace having Sz as its sequential corejection. 

Proof. We only need to prove that (4) + (1). Suppose OX is not Frechet. By Lemma 2.3, 

there is a subset A of X such that cls(A) is not closed in ax. Since aX is sequential, 

there exists a sequence {xCn} in CL(A) converging to x E X\ cls(A). We can assume 

that the 5,‘s are all distinct and x, $ A. Since X is T2, let {Vn} be a sequence of 

pairwise disjoint open subsets of X with each z, E V,. For each n E J/, there is a 

sequence {xnm} in A n V, converging to xn in X. Put 

c = {x} u {x n: nEN}u{x,,: n,mEN}. 
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Then C is a comb at z of X. By (4), aC is not homeomorphic to SZ. By Lemma 2.2, C 

has a diagonal. Let {yk} be a diagonal of C which converges to y in C. If y # IC, then 

y E & for some i E N, and yk E Vi for some j E N and all k > j, a contradiction. 

Thus C has a diagonal converging to 2, hence 5 E cls(A), a contradiction. Therefore 

aX is Frechet. 0 

A point x in a space X is called regular Gs if there is a sequence of neighborhoods 

of z in X such that the intersections of their closures is {x}. 

Lemma 2.5. Let X be a space in which each point is regular Gs. If X contains no 

closed subspace having S2 as its sequential coreflection, then aX is a Frechet space. 

Proof. By Theorem 2.4, we only need to show that if X contains a subspace S such 

that US is homeomorphic to 5’2, then S contains a closed subspace T of X such that 

aT is homeomorphic to &. Let S = {x} U {x,: n E N} U {x,,: n,rn E N}. 
Take a sequence {Gk} of open neighborhoods of x in X such that each Gk_ti C Gk 

and {z} = n{cl(G/J: k E N}. S ince the sequence {x~} converges to x, there is a 

subsequence {z,, } of {x,} with each xnlc E Gk. Since the sequence {xnkm} converges 

to x,~ for each m E N, there is mk E N such that x,,, E Gk if m 3 mk. Put 

T={x}U{x,,: ICEN}U{X,~,: kEN, m3mk). 

If p E X\T, then p E X\cl(Gk) for some k E N. Let 

F = {x,~: i < k} fl {x,~,: i < k, m 3 mi}. 

Then F is compact in X, there is a neighborhood W of p in X such that W n F = 8, so 

wfl(X\cl(Gl,))flT = 0, h ence T is closed in X, and UT is homeomorphic to S2. 0 

Since a closed subspace of a sequential space is sequential, the foregoing proof gives: 

Corollary 2.6. Let X be a space in which each point is regular Gg. rf X contains a 

copy of SZ, then X contains a closed copy of SZ. 

For a space X, let v be a family of subsets of X. M is a network of z in X if x E n p 

and whenever G is open in X with x E G, then P c G for some P E 63. 

. Definition 2.7. Let p = lJ{ pz. x E X} be a family of subsets of X which satisfies that 

for each x E X, 

(1) p, is a network of x in X, 

(2)ifU,V~63~,thenWcUnVforsomeW~~,. 

p is a sequentially open network (respectively, a universal cs-network) for X if each 

element of pz is a sequentially open subset (respectively, a sequential barrier of x) in X. 

A space X is a sof-countable space (respectively, a universally csf-countable space) if 

X has a sequentially open network (respectively, universal cs-network) p such that each 

p3: is countable. 
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Obviously, a space is a first-countable space if and only if it is a sof-countable and 

sequential space. Sz is not sof-countable. The following two corollaries follow easily 

from Lemma 2.3, Theorems 2.4 and 2.5. 

Corollary 2.8. The following are equivalent for a space X: 

(1) (TX is a first-countable space. 

(2) X is a sof-countable space. 

(3) X is a universally csf-countable space and contains no subspace having 5’2 as its 

sequential coreflection. 

Corollary 2.9. A (regulnr) space X has a o-locally finite sequentially open network 

if and only if X has a a-locally finite universal cs-network and contains no (closed) 

subspace having Sz as its sequential corejection. 

Remark 2.10. If a space X has a a-locally finite sequentially open network, then aX 

has a a-locally finite space. But its inverse proposition is not hold. For example, cr(/3ni) 

is a discrete space, and ,fiN is not a g-space. 

Definition 2.11. Let X be a space, and let p be a cover of X. p is a k-network for X 

if, whenever K c U with K compact and U open in X, then K c U go’ C U for some 

finite p’ C ~3. 

Theorem 2.12. Suppose X has a point-countable k-network. If OX contains no closed 

copy of 5’2, then aX is a Frechet space. 

Proof. Suppose 63 is a point-countable k-network for X. If aX is not a FrCchet space, 

by Theorem 2.4, X contains a subspace C having SZ as its sequential coreflection. Put 

c={~}u{z n: n E N} u {z,,: n,m E ni}? 

K={z}U{z,: nEN}: 

%={(PE~: Pn{z,,: n,mEN}#0andPnK=B}. 

The !J? is countable. Let !?-l = {P,: Ic E N}. For each n E N, there is m, E N such 

that { :c,, : m 3 m,} c X\ lJkcn Pk. Take 

S = KU {x,,: m 2 m,}. 

Then US is homeomorphic to Sz. If 05’ is not closed in OX, there is a sequence {z~,~,} 

in S with x,~,, + 2 $ S. We may assume that ni+l > ni. Put 

KI = {z’} u {x,%,,%: i EN}. 

Then K, n K = 0, there is an open set U in X with Kt C U C ?? C X\K, thus 

Kt c U M’ c Ii for some finite v’ c p, so P n Kt is infinite for some P E p’, hence 

P = Pj for some j E N, and x,~,~ $! P for each n, > j, a contradiction. Therefore 

aS is closed in ax. 0 
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Corollary 2.13. Suppose X is a k-space with a point-countable k-network, then X is a 

Fr&het space if and only if X contui~s no closed copy of 23~. 

Proof. Every &space with a point-countable k-network is a sequential space [X, Corol- 
lary 3.41. q 

Example 2.14. There exist a compact, sequential space X and its subspace M such that 

(I) X contains no copy of S2 or S(w). 
(2) aNI is homeomorphic to &. 
(3) M has a countable universal cs-network. 

Proof. By Example 7.1 in [7], let $(N) = N U d be the Isbell’s space, and let X = 
$1(N) U {a) be the one-point compactification of $(N), then X is a compact, s~uential 
space. X contains no copy of S’z or S(w) by Corollary 3.10 in [16]. Take an infinite 
subset {A,: n E N} c A, then the {An} converges to a in X because A is closed 
discrete in $(N). For each n E N, put 

A, = {a,,: m E. N}. 

Then the {a,,) converges to A, in q(N). Let 

M = {u} u {A,: n E N} u {unm: n., m E N}. 

Since any subsequence of {n,,} does not converge to a in X, by Theorem 2.4, criVf is 

homeomo~hic to SZ. For each z E M, let 

1 

{{u} u {An: n 3 i}: i EN}, x=a 

px = {{A,) u {ann: mai}: HEN}, x=ATL, nEN 

{&WlJ~> x=anm, n,mEN. 

Then lJ(gas: 3 E X> is a countable universal cs-network for A&. 
M is not sof-countable by Corollary 2.8. cl,(N) . IS not a sequentially closed subset of 

X because cl,(N) = q(N). 0 

3. On the sequential fan S(w) 

Definition 3.1. Call a subspace of a space a fun (at a point 2) if it consists of a point x, 
and a countably infinite family of disjoint sequences converging to x. Call a subset of a 
fan a diagonal if it is a convergent meeting infinitely many of the sequences converging 
to x and converges to some point in the fan. 

A fan at a point z in a space X is called a countable sheafat LT in [3,4]. If X is a 
fan, then each point of X is regular GJ. S(w) is a fan without a diagonal. 

Lemma 3.2. For a space X, OX is homeomorphic to S(w) if and only if X is a fan 
without a diagonal. 
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Proof. Suppose aX is homeomorphic to S(w). Since S(w) is a fan without a diagonal, 

X is a fan without a diagonal. Conversely, suppose X is a fan without a diagonal. Since 

aX is sequential, it is homeomorphic to S(w). q 

Lemma 3.3. Suppose X contains a fan S at a point x without a diagonal converging 

to x. If x is regular Gg in X, then S contains a closed subspace T of X such that aT 

is homeomorphic to S(w). 

Proof. Let S = {x}U{x,,: n, m E ni}, where the sequence {xnm} converges to x for 

each n E N. There is a sequence { Wn} of open neighborhoods of x in X with {x} = 

n{cl(Wn): n E N}. For each n E N, there is m(l,n) E N with ~~~(1,~) E Wn+r. 

Denote Dr = {~c,,(r,,): n E N}, and VI = X\Dl, then any subsequence of IIt does 

not converge to 2, thus VI is a sequential barrier of z in X. By inductive method, we 

can construct Di = {x,,(~,~): rt E N}, and Vi = X\(D, U D2 U . . . U Di) such that 

%,(,+I.n) E Wn+i+l nViandm(i,n)<m(i+l,n)foreachi~N.Thenthesequence 

{x nm(z,n): i E N} converges to IC for each n E N, and x,,ciTn) E Wk if n+i 3 k. Let 

T = {z} u {z,+~): i,n E N}. 

Then T\Wk is finite for each /c E N, thus p E cl(Wk) when p is an accumulation point 

of T in X, so p = x, i.e., x is a unique accumulation point of T in X. Therefore, T is 

closed in X, and oT is homeomorphic to S(w). 0 

Corollary 3.4. Let X be a space in which each point is regular Gg. If X contains a 

copy of S(w), then X contains u closed copy of S(w). 

Definition 3.5. 

(1) A space X is an al-space [3,4] if T = {CC} U (U{T,: 72 E N}) is a fan at II: 

of X, where each sequence T, converges to x, then there exists a sequence S 

converging to x such that T,\S is finite for each n E N. 

(2) A space X is an ad-space [3,4] if every fan at x of X has a diagonal converging 

to 5. 

(3) A space X is a countably bisequential space (or a strong Fre’chet space) [13] if, 

whenever {A,} is a decreasing sequence of subsets of X and x E n{cl(An): n E 

N}, there is a sequence {x,} converging to x with 2, E A, for each n E N. 

Clearly, each ot-space is an ad-space, and a space is countably bisequential if and 

only if it is a Frechet and o4-space. X is an ai4-space if and only if aX is an ad-space. 

By Lemma 3.3, we have that 

Theorem 3.6. The following are equivalentfor a space X (in which each point is regular 

G6): 
(1) X is an ad-space. 

(2) Every fan of X has a diagonal. 

(3) X contains no (closed) subspace having S(w) as its sequential coreflection. 
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Corollary 3.7. Let X be a space (in which each point is regular Gs). CTX is countably 

bisequent~al if and only if X contains no (closed) subspace having 5’2 or S(w) as its 

sequential corefiection. 

Theorem 3.8. Suppose X has a point-countable k-network. If aX contains no closed 

copy of S(w), then X is an cy4-space. 

Proof. Suppose 53 is a point-countable k-network for X. If X is not an a;l-space, by 
Definition 3.5, there is a fan at x of X without a diagonal converging to z. Put 

S = {x} U {xnm: n, m E N}, 

%={PEfx Pn{x,,,: n.,mEn/}#0andx$P}={Pk: HEN}. 

For each n E N, there is m, E JV such that Ix,,: m > m,) C X\ UkGn Pk. Take 

T = {x} U {xnm: m b m,}. 

Then T is a fan at x of X without a diagonal converging to x. If there is a sequence 

(xnimi} in T with z,~~, -t x’ # x. We may assume that rz2+1 > ni. So there exists 

P E % such that P fl {xnxmi: i E N) is infinite, a contradiction. Hence aT is a closed 

subspace of ax, and is homeomorphic to S(w). 0 

Corollary 3.9. Suppose X is a k-space with a point-countable k-network. 
(1) X is an cr4-space if and only if X contains no closed copy of S(w). 

(2) X is a ~rst-countable space if and only if X contains no closed copy of Sz 

and S(w). 
(3) X is a jrst-countable space if and only if XW is a k-space. 

Proof. Since every k-space with a point-countable k-network is sequential 18, Corol- 
lary 3.41, (1) holds by Theorem 3.8. 

If X contains no closed copy of 5’~ and S(w), by (1) and Corollary 2.13, X is countably 
bisequential. For each p E X, declaring every point 5 E X, IC # p isolated and p having 
old neighborhoods we get a regular countably bisequential topology 7 on X and X has a 
point-countable k-network in this topology. By Corollary 3.6 in [8], X is first-countable 
at p in the topology 7 and thus in its original topology, (2) holds. 

If X” is a k-space, X contains no closed copy of & and S(w) by Proposition 4.2 in 
[19], hence X is first-countable and (3) holds. 0 

Corollary 3.9(2) answers a question in [12]. By Corollary 3.9(2), Theorem 6.1 in [8] 
and Theorem 9.8 in [ 131, we have the following corollary, which improves some theorems 
in [ZO]. 

Corollary 3.10. Suppose X is a quotient s-image of a metric space. X has a point- 
countable base if and only if X contains no (closed) copy of Sz and S(w). 



S. Lin / Topology and its Applications 81 (1997) 185-196 193 

Definition 3.11. Let p = U{pZ: 2 E X} be a family of subsets of X which satisfies 

the conditions (1) and (2) in Definition 2.7. M is a weak base [2] for X if a necessary 

and sufficient condition for G c X to be open in X is that, for each x E G, P c G for 

some P E pz. M is a cs-network for X if, given an open neighborhood G of x and a 

sequence {xrL} converging to x, there are P E p, and n E N such that 2, e P c G for 

all n > i. A space is a &-countable space [2] (respectively, a csf-countable space) if X 

has a weak base (respectively, a cs-network) 63 such that each pZ is countable. A space 

is a g-metrizable space [8] (respectively, an N-space [4]) if it is a regular space having 

a o-locally finite weak base (respectively, cs-network). 

Every g-metrizable space is gf-countable. Every N-space is csf-countable. The follow- 

ing lemma can be checked directly. 

Lemma 3.12. Let p be a cover of a space X. If kc, is a weak base for X, then p is a 

universal cs-network for X. If X is a sequential space and 63 is a universal es-network 

for X, then 53 is a weak base. 

Theorem 3.13. The following are equivalent for a space X: 

(1) aX is a gf-countable space. 

(2) X is a universally csf-countable space. 

(3) X is a @-countable and al-space. 

(4) X is a csf-countable and oh-space. 

Proof. (1) + (2) and (3) + (4) are obvious. 

(2) 3 (3) Suppose X is a universally csf-countable space. Let F = {z}U (U{Tn: n E 
N}) be a fan at z of X, where each sequence T, converges to 2. Let {P,: n E N} 

be a decreasing universal cs-network at 2 in X, and S, = T, n P, for each n E N, 

s = UnENS” = {s,: n E N}, then {sn} is a sequence converging to x, and T,\S is 

finite for each n E N. Hence X is an ol-space. 

(4) + (1) Suppose X is a csf-countable and cy4-space. For each x E X, let pZ be a 

countable cs-network at x in X. Put 

%i, = { u k3:: k3: . IS a finite subset of p2 and 

U mk is a sequential barrier of IC in X}. 

If RZ is not a network of x in X, then there exists an open subset G in X such that 

x E G and F $z! G for each F E CR2,. Denote 

{P E ~32: P c G} = {P: i EN}, F, = u{Pz: i G n}, n EN. 

Then F, is not a sequential barrier of x in X. Since pz is a cs-network at x in X, there 

are a sequence Ti converging to x and n2 E N such that Ti c P,?+, \F,%, and ni+t > n, 

for each i E N. Put 

T = {x} u (u{T,: i E N}). 
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Then T is a fan at x in X. Since X is an ah-space, T has a diagonal {xk} converging 

to x, there are i and m E N such that xk E Pi for all k > m. Take some k 2 m and 

some j 3 i with xk E Tj, then xk E Pi n (X\F&) = 8, a contradiction. So fii, is a 

countable universal cs-network at x in X, and PIi, is a countable universal cs-network 

at x in ax. Since aX is sequential, aX is gf-countable. 0 

By Corollary 3.9, Theorem 3.13 and Lemma 7(3) in [lo], we have the following 

corollary which answers a question in [21]. 

Corollary 3.14. Suppose X is a sequential space with a point-countable es-network. X 

has a point-countable weak base if and only if X contains no (closed) copy of S(w). 

Theorem 3.15. The following are equivalent for a regular space X. 

(1) X has a a-locally$nite universal cs-network. 

(2) X is an N and cul-space. 

(3) X is an N and cr4-space. 
(4) X is an N-space and contains no (closed) subspace having S(w) as its sequential 

corejection. 

Proof. (1) implies (2) because of Theorem 3.13. (2) implies (3) by Definition 3.5. (3) is 

equivalent to (4) by Theorem 3.6. We show that (3) + (1). Suppose X is an N and 

o4-space. Let p be a a-locally finite cs-network for X which is closed under finite 

intersections. By Theorem 3.13, X is universally csf-countable. For each x E X, let 

{Qn(x): n E N} be a universal cs-network at x in X. Let 

pz = {P E M: Qn(x) c P for some rz E N}. 

Then pz is a universal cs-network at x in X by the proof of Lemma 7(3) in [lo], thus 

U{mz: x E X} is a a-locally finite universal cs-network for X. 0 

Since k-spaces are equivalent to sequential spaces in which each point is Gs [13], we 

have that 

Corollary 3.16 [ 111. The following are equivalent for a k-space X: 

(1) X is a g-metrizable space. 
(2) X is an N and (~1 -space. 

(3) X is an N and ad-space. 
(4) X is an N-space and contains no (closed) copy of S(w). 

Corollary 3.17. A space is a metrizable space ifand only ifit is a countably bisequential 
N-space. 

Theorem 3.18. The following are equivalent for a space X: 
(1) X has a countable universal cs-network. 
(2) X is an al-space with a countable cs-network. 
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(3) X is an ah-space with a countable m-network. 

(4) X has a c#untab~e c~-ne~o~k and contains no substage having S(d) as its 

.~eq~entia~ core$ection. 

Proof. By Theorem 3.13, Definition 3.5 and Theorem 3.6, we only need to show that (4) 

implies (1). Let 53 be a countable cs-network for X which is closed under finite unions. 

For each z E X, put 

bjr = {P E p: P is a sequential barrier at z in X}. 

If p3, is not a network of z in X, by the proof in Theorem 3.13, we has a fan T at J: in X. 

Using the same notation in the proof in Theorem 3.13, if D is a diagonal of T converging 

to d, then (5, d} pi D c P c C for some P E Q, thus P = Pi for some i F_ JV. Take 

some j 3 i and d’ f L? n Tj, then d’ E Pi n 7” C Pi n (X\f;n,) = (R, a con~adi~tion. 

This show that T has not a diagonal. By Lemma 3.2, crT is homeomorphic to S(w), 

a contradiction. Hence p, is a network of z in X, and X has a countable universal 

cs-network. 0 

Example 3.19. There are a compact, sequential space Y and its subspace T such that 

(1) Y contains no copy of $7. or S(u‘). 

(2) aT is homeomorphic to S(w). 

(3) T has a countable cs-network. 

Proof. By the same notation in Example 2.14, let A = {A,: n. E N}. Take Y = X/A 

and let f : X + Y be the natural quotient map, then Y is a compact, sequential space, 

and Y contains no copy of SZ or S(w) by Corollary 3.10 in [I@. Let T = f(M), then 

T has a countable cs-network and aT is homeomorphic to S(w). 0 

This paper is a revision of the original paper “N-spaces and copy of S, or 5’2” by 

the author, main results of which are Theorems 1.3 and 1.4 in this paper. The author 

would like to thank the referee for proposing some recommendations for rewriting the 

original paper, which contain the ideas of comb and fan, and some weakly first-countable 

properties on the sequential coreflection of a space, and so forth. 

References 

[I] R. Arens, Note on convergence in topology, Math. Msg. 23 (19.50) 229-234. 
121 A. Arha~ge~‘s~i, Mappings and spaces, Russian Math. Surveys 21 (4) (1966) 115-162. 
[3] A. Arhangel’skii, The frequency spectrum of a topological space and the classification of 

spaces, Soviet Math. Dokl. 13 (1972) 265-268. 

[4] A. Arhangel’skii, The frequency spectrum of a topological space and the product operation, 
Trans. Moscow Math. Sot. 2 (1981) 163-200. 



196 S. Lin / Topology and its Applications 81 (1997) 185-196 

[5] A. Arhangel’skii and S. Franklin, Ordinal invariants for topological spaces, Michigan Math. J. 

15 (1968) 313-320. 
[6] L. Foged, Characterizations of N-spaces, Pacific J. Math. 110 (1984) 59-63. 

[7] S. Franklin, Spaces in which sequences suffice II, Fund. Math. 61 (1967) 51-56. 
[8] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, 

Pacific J. Math. 113 (1984) 303-332. 

[9] J. Guthrie, A characterization of No-spaces, General Topology Appl. 1 (1971) 51-56. 
[lo] Shou Lin and Y. Tanaka, Point-countable k-networks, closed maps, and related results, 

Topology Appl. 59 (1994) 79-86. 
[l l] C. Liu and M. Dai, g-metrizability and S,, Topology Appl. 60 (1994) 185-189. 
[12] C. Liu and Y. Tanaka, Star-countable k-networks and compact-countable k-networks, Preprint 

(1995). 
[ 131 E. Michael, A quintuple quotient quest, General Topology Appl. 2 (1972) 91-138. 
[14] T. Nogura, D. Shakhmatov and Y. Tanaka, Metrizability of topological groups having weak 

topologies with respect to good covers, Topology Appl. 54 (1993) 203-212. 
[ 151 T. Nogura and A. Shibakov, Sequential order of product spaces, Topology Appl. 65 (1995) 

271-285. 
[16] T. Nogura and Y. Tanaka, Spaces which contain a copy of S, or SZ and its application, 

Topology Appl. 30 (1988) 51-62. 
[ 171 A. Shibakov, Metrizability of sequential topological groups with point-countable k-networks, 

Preprint (1996). 
[18] F. Siwiec, On defining a space by a weak base, Pacific J. Math. 52 (1974) 233-245. 
[19] Y. Tanaka, Products of sequential spaces, Proc. Amer. Math. Sot. 54 (1976) 371-375. 

[20] Y. Tanaka, Metrizability of certain quotient spaces, Fund. Math. 119 (1983) 157-168. 
[21] Y. Tanaka, Theory of k-networks, Questions Answers Gen. Topology 12 (1994) 139-164. 


