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Abstract Let K be a class of spaces which are eigher a pseudo-open s-image of a metric space or a

k-space having a compact-countable closed k-network. Let K′ be a class of spaces which are either a

Fréchet space with a point-countable k-network or a point-Gδ k-space having a compact-countable

k-network. In this paper, we obtain some sufficient and necessary conditions that the products of

finitely or countably many spaces in the class K or K′ are a k-space. The main results are that

Theorem A If X, Y ∈ K. Then X × Y is a k-space if and only if (X, Y ) has the Tanaka’s

condition.

Theorem B The following are equivalent:

(a) BF (ω2) is false.

(b) For each X, Y ∈ K′, X × Y is a k-space if and only if (X, Y ) has the Tanaka’s condition.
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1 Introduction

In this paper all spaces are regular and T1. Suppose X is a topological space, and P is a
collection of subsets of X. P is called a k-network for X if K ⊂ U with K compact and U open
in X, then K ⊂ ∪P ′ ⊂ U for some finite P ′ ⊂ P . P is a closed (compact) k-network if P is a
k-network for X where each element is closed (compact) in X. A space X is a Kω-space if X

has a countable cover {Kn} of compact subsets such that F ⊂ X is closed in X if and only if
F ∩ Kn is closed for each Kn. A pair (X,Y ) of spaces X and Y has the Tanaka’s condition if
one of three properties of below holds:

(1) X and Y are first countable spaces.
(2) X or Y is a locally compact space.
(3) X and Y are local Kω-spaces.
Michae[1] posed the following question: Find a sufficient and necessary condition that the

product space X × Y is a k-space for k-spaces X and Y . One of the successful results for the
class of generalized metric spaces is the Tanaka’s condition as follows.
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Theorem 1.1[2] If X and Y are k-spaces with a σ-locally finite k-network. Then X × Y

is a k-space if and only if (X,Y ) has the Tanaka’s condition.
How to improve on Theorem 1.1 is the main direction for the study of products of k-spaces.

Since Theorem 1.1 does not hold in the class of k and M1-spaces, a real generalization for
Theorem1.1 is in the class of quotient s-images of metric spaces or closed images of metric
spaces.

For the class of quotient s-images of metric spaces, Chen[3] tried to prove the following
conjecture.

Conjecture 1.2 If X and Y are k-spaces with a point-countable closed k-network, then
X × Y is a k-space if and only if (X,Y ) has the Tanaka’s condition.

But, Gruenhage[4] pointed out that Chen’s proof is not true. About Conjecture 1.2, we
introduce a class K, which denotes the class of spaces which are either a pseudo-open s-image
of a metric space or a k-space having a compact-countable closed k-network, here a collection
P of subsets of a space X being point-countable (compact-countable) whenever x ∈ X (K is
compact in X). Then {P ∈ P : x ∈ P} ({P ∈ P : K ∩ P �= ∅}) is countable. In Section 2, we
discuss the k-space property of products of finitely or countably many spaces in the class K,
which generalizes Theorem1.1 and some related results, and is a partial answer to Conjecture
1.2.

For the class of closed images of metric spaces, Gruenhage[5] proved the following theorem.
Theorem 1.3 The following are equivalent:
(a) BF (ω2) is false.
(b) Sω × Sω1 is not a k-space.
(c) If X and Y are the closed images of metric spaces, then X × Y is a k-space if and only

if (X,Y ) has the Tanaka’s condition.
A space is called a Las̆nev space if it is a closed image of a metric space. A Las̆nev space

is equivalent to a Fréchet space with a σ-HCP k-network. Dai and Liu[6] obtained a k-space
property of product spaces for the class of k-spaces with a σ-HCP k-network, which is similar
to Theorem 1.3.

The product of two CW -complexes is closely associated with the k-space property of product
spaces because Tanaka[7] proved that supposing X and Y are CW -complexes, then X × Y is a
CW -complex if and only if it is a k-space. About the product of CW -complexes, Tanaka and
Zhou[8] proved

Theorem 1.4 The following are equivalent:
(a) BF (ω2) is false.
(b) Iω × Iω1 is not a CW -complex.
(c) If X and Y are CW -complexes, then X × Y is a CW -complex if and only if (X,Y ) has

the Tanaka’s condition.
(d) If X and Y are the closed images of CW -complexes, then X × Y is a k-space if and

only if (X,Y ) has the Tanaka’s condition.
As is well known, every CW -complex is dominated by a cover of compact metric subsets. If

X is a closed image of a CW -complex, then X is also dominated by a cover of compact metric
subsets. For the dominated family of a space, Tanaka[9] further proved

Theorem 1.5 The following are equivalent:
(a) BF (ω2) is false.
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(b) If X and Y are dominated by Las̆nev spaces, then X × Y is a k-space if and only if
(X,Y ) has the Tanaka’s condition.

Concerning a series of theorems above, we introduce a class K′, which denotes the class of
spaces which are either a Fréchet space with a point-countable k-network or a point-G8 k-space
with a compact-countable k-network, here a point-G8 space being a space where each point is
a G8 set in the space. In Section 3, we discuss the k-space property of products of finitely or
countably many spaces in the class K′, which is a common generalization of Theorems 1.3–1.5.

We recall two canonical quotient spaces Sa and S2. For a ≥ ω, let Sa be the quotient space
obtained from the topological sum of a convergent sequences by identifying all the limit points
with a single point ∞. Let S2 = (N ×N)∪N ∪{0} with each point of N ×N isolated. A local
base at n ∈ N consists of all sets of the form {n}∪{(m,n) : m ≥ m0}, and U is a neighborhood
at 0 if and only if 0 ∈ U and U is a neighborhood of all but finitely many n ∈ N.

2 On the Class K
By [10], if a space X is a k-space with a point-countable closed k-network, then it is a

quotient s-image of a metric space; if X is a quotient s-image of a metric space, then it is a
k-space with a point-countable k-network; if X is a k-space with a point-countable k-network,
then every countably compact closed subset of X is compact metrizable in X, thus X is a
sequential space, hence X has a countable tightness.

Lemma 2.1 Let P be a point-countable k-network for a k-space X which is closed under
finite intersections. Putting F = {P ∈ P : P is compact in X}. Then F is a k-network for X

if and only if every first countable closed subspace of X is locally compact.
Proof Necessity. We can assume that X is first countable.For each x ∈ X, by Proposition

3.2 in [10], x ∈ (∪F ′)◦ for some finite F ′ ⊂ F . Hence X is locally compact.
Sufficiency. Let K be compact in X. By Mĭsc̆enko’s lemma, a collection of minimal covers

of K consisting of a finite subcollection of P is at most countable, say {Pn}. For each n ∈ N,

let An =
∧

i≤n Pi, An = ∪An. Then An ⊂ P ,K ⊂ An and {An} is a network of K in X.
We assert that some An is compact. If not, then each An is not countably compact, thus An

contains a countable discrete closed subset Dn. Put

H = K ∪
( ⋃

n∈N

Dn

)
.

Then H is a first countable closed subspace of X, but H is not locally compact, a contradiction.
Hence An is compact for some n ∈ N . If K ⊂ U with U open in X. There exists m ≥ n such
that K ⊂ Am ⊂ Am ⊂ U , i.e., a finite Am ⊂ F such that K ⊂ ∪Am ⊂ U, thus F is a k-network
for X.

Lemma 2.2 (Tanaka[11], Lemma 4) Suppose X × Y is a k-space with t(X) ≤ ω. Then
the following condition (C1) or (C2) holds:

(C1) If {An} ↓ x in X, then there exists a nonclosed subset {an} of X with an ∈ An for
each n ∈ N.

(C2) If {Bn} is a k-sequence in Y , then some Bn is countably compact.
Lemma 2.3 Suppose X is a quotient s-image of a metric space. If X has (C2) of Lemma

2.2, then X is a quotient s-image of a locally separable metric space.
Proof Suppose f : M → X is a quotient s-mapping where M is a metric space. Let B be a

σ-locally finite base for M . For each x ∈ X, take z ∈ f−1(x). Let {Bn : n ∈ N} ⊂ B such that
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Bn+1 ⊂ Bn and {Bn} is a local base at z in M . Then {f(Bn)} is a k-sequence in X, thus some
f(Bn) is countably compact by (C2), so f(Bn) is a separable metrizable subspace of X. Hence
X has the weak topology with respect to a point-countable cover {P ∈ f(B) : P is a separable
metrizable subspace of X}, then X is a quotient s-image of a locally separable metric space.

Lemma 2.4 (Tanaka[12], Theorem 4.4) Suppose X is a quotient s-image of a locally
separable metric space. If X contains no closed copy of Sω and S2, then X has a point-countable
base.

Lemma 2.5 Let Y ∈ K. If Sω × Y is a k-space, then Y has a σ-locally finite compact
k-network.

Proof Since Sω × Y is a k-space, every first countable closed subspace of Y is locally
compact by Lemma 2.2. If Y has a compact-countable closed k-network, Y has a star-countable
compact k-network by Lemma 2.1, then Y has a σ-locally finite compact k-network by Theorem
2.4 in [13]. If Y is a pseudo-open s-image of a metric space, Y is a closed s-image of a locally
compact metric space by Corollary 1.4 in [14], thus Y has a compact-countable closed k-network,
hence Y has a σ-locally finite compact k-network.

Theorem 2.6 If X,Y ∈ K, then X×Y is a k-space if and only if (X,Y ) has the Tanaka’s
condition.

Proof If (X,Y ) has the Tanaka’s condition, then X × Y is a k-space[2]. Now, let X × Y

be a k-space.
(1) If X and Y contain closed copies of Sω or S2, then Sω × X and Sω × Y are k-spaces

because Sω is a perfect image of S2. By Lemma 2.5 and Theorem 1.1, (X,Y ) has the Tanaka’s
condition.

(2) If X contains a closed copy of Sω or S2, and Y contains no closed copy of Sω and S2,
then Sω × Y is a k-space, thus Y has a σ-locally finite compact k-network by Lemma 2.5, so Y

is a quotient s-image of a locally compact metric space. By Lemma 2.4 and Lemma 2.2, Y is a
locally compact space, thus (X,Y ) has the Tanaka’s condition.

(3) If X and Y contain no closed copies of Sω and S2, by Lemma 2.2, there exist four cases
as follows:

Case 1 X and Y satisfy (C1). Then X and Y have point-countable base by (C1) and
Theorem 9.8 in [15].

Case 2 X satisfies (C1) and (C2). Then X has a point-countable base by (C1), and X is
locally compact by (C2).

Case 3 Y satisfies (C1) and (C2). Then Y is locally compact.
Case 4 X and Y satisfy (C2). Then X and Y are quotient s-images of metric spaces,

thus X and Y have point-countable bases by Lemma 2.3 and Lemma 2.4.
In a word, (X,Y ) has the Tanaka’s condition.
In the second part of this section we discuss the k-space property of products of count-

ably many spaces in the class K. A sequence {Xi} of spaces is called satisfying the Tanaka’s
condition, if {Xi} has one of the following three properties:

(1) All Xi are first countable spaces.
(2) There is an n ∈ N such that all Xi are compact (i > n) and all Xi but at most an i ≤ n

must be locally compact.
(3) There is an n ∈ N such that all Xi are compact (i > n) and all Xi are Kω(i ≤ n) locally.
If {Xi} is a sequence of k-spaces having the Tanaka’s condition, then

∏
i∈N Xi is a k-space.
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Lemma 2.7 Let {Xi} be a sequence of quotient s-images of metric spaces. If
∏

i∈N Xi

is a k-space, then
∏

i≥n Xi is either a compact space or a first countable space for some n ∈ N.

Proof By Theorem 1.3 in [16], (Sω)ω and (S2)ω are not a k-space, then Xi contains a
closed copy of Sω or S2 for only finitely many i ∈ N , thus there exists j ∈ N such that Xi

contains no closed copy of Sω and S2 for each i ≥ j. By a proof similar to that of the Theorem
2.6, either all Xi are first countable for each i ≥ j, or

∏
i≥m Xi is locally compact for some

m ≥ j. Finally,
∏

i≥n Xi is compact for some n ≥ m.

Corollary 2.8 If X is a quotient s-image of a metric space, then Xω is a k-space if and
only if X is a first countable space.

By Lemma 2.7 and Theorem 2.6, we have a countable product theorem on k-spaces.
Theorem 2.9 If {Xi : i ∈ N} ⊂ K, then

∏
i∈N Xi is a k-space if and only if {Xi} has

the Tanaka’s condition.
Now, we discuss the gf -countability of products of countably many spaces in the class K.

Let X be a space. A collection B of subsets of X is said to be a weak base for X, if B =
⋃

x∈X Bx

satisfies that
(1) x ∈ ∩Bx for each x ∈ X.

(2) For each U, V ∈ Bx,W ⊂ U ∩ V for some W ∈ Bx.

(3) A subset G of X is open in X if and only if for each z ∈ G there exists B ∈ Bz with
B ⊂ G.

Here Bx is said to be a local weak base at x in X. If each Bx is countable, then X is
said to be a gf -countable space. Every first countable space is gf -countable, and every Fréchet
gf -countable space is first countable. Hence regarding the gf -countability of products of spaces
in the class K we need only to discuss the gf -countability of products of countably many spaces
which are gf -countable spaces with a compact-countable closed k-network. Every gf -countable
space is a sequential space. A subset P of a space X is a sequential neighborhood at x in X, if
{xn} is a sequence in X with xn → x, then {x} ∪ {xn : n ≥ i} ⊂ P for some i ∈ N. If Bx is a
local weak base at x in X, then B is a sequential neighborhood at x in X for each B ∈ Bx.

Lemma 2.10 Let {Xi} be a sequence of gf -countable spaces. If
∏

i∈N Xi is a sequential
space, then it is a gf -countable space.

Proof Let Z =
∏

i∈N Xi. For each i ∈ N, let ∪{Bixi : xi ∈ Xi} be a weak base for Xi,
where each Bixi is countable. For each z = (xi) ∈ Z, put

Pz =




∏

i≤n

Bixi


×

∏
i>n

Xi : Bixi ∈ Bixi , i ≤ n and n ∈ N


 .

Then Pz is countable, and each element of Pz is a sequential neighborhood at z in Z. We shall
show that each Pz is a local weak base at z in Z. If not, there exists a nonopen subset G of
Z such that for each y ∈ G, there is a W ∈ Py with W ⊂ G. Since Z is sequential, there is a
sequence {zn} of Z\G with zn → z ∈ G, then W ⊂ G for some W ∈ Pz, and zn ∈ Z\W, hence
W is not a sequential neighborhood at z in Z, a contradiction. Therefore Z is a gf -countable
space.

By the proof of Lemma 2.10, we know that supposing {Xi} is a sequence of spaces with a
point-countable (compact-countable) weak base, if

∏
i∈N Xi is a k-space, then

∏
i∈N Xi has a

point-countable (compact-countable) weak base.
Theorem 2.11 If {Xi} is a sequence of gf -countable spaces with a compact-countable

closed k-network, then the following conditions are equivalent:



542 Acta Mathematica Sinica, New Series Vol.13 No.4

(1)
∏

i∈N Xi is a gf -countable space.
(2)

∏
i∈N Xi is a k-space.

(3) {Xi} has the Tanaka’s condition.
If {Xi} is a sequence of spaces having a compact-countable closed weak base, then the above-
mentioned conditions are equivalent to

(4)
∏

i∈N Xi has a compact-countable closed weak base.
Proof By Theorem 2.9 and Lemma 2.10 it is easy.

3 On The Class K′

Let ωω be the set of all functions from ω into ω. For two functions f and g ∈ ωω, we
define f ≤ g if and only if the set {n ∈ ω : f(n) > g(n)} is finite. BF (ω2) means the following
assertation.

BF (ω2) : If F ⊂ ωω has cardinality less that ω2, then there exists g ∈ ωω such that f ≤ g

for all f ∈ F.

It is known that CH implies that BF (ω2) is false.
Lemma 3.1 Suppose Sω × X is a k-space. Then the following are equivalent:
(a) BF (ω2) is false.
(b) If X has a point-countable k-network P, then there exists a countable Px ⊂ P such that

x ∈ (∪Px)0 for each x ∈ X.

(c) If X is a Fréchet space with a point-countable k-network, then X is a local Kω-space.
(d) If X has a compact-countable k-network, then X is a local Kω-space.
Proof Since Sω × X is a k-space, by Lemma 2.2, every first countable closed subspace of

X is locally compact.
(a) → (b). Suppose BF (ω2) is false. Then there exists a subcollection {fa ∈ ωω : a < ω1}

of ωω such that if g ∈ ωω, then there exists a < ω1 with fa(n) > g(n) for infinitely many n ∈ ω.

Suppose there exists x ∈ X such that x �∈ (∪Px)0 for every countable Px ⊂ P . Since X has
countable tightness, let N0 be a Moore-Smith net converging to x, x �∈ N0 and N0 be countable.
Let P0 = {P ∈ P : P ∩N0 �= ∅}. Then P0 is countable. By transfinite induction, we can choose
a collection {Na : a < ω1} of subsets of X such that

(1) Moore-Smith net Na converges to x, x �∈ Na and Na is countable for each a < ω1.

(2) P meets at most one Na for each P ∈ P .

Put Ha = {(mn, ia) : m ≤ fa(n) and i ≤ n}. where mn and ia denote the mth term of
the nth sequence in Sω and the ith term of the Na, respectively. Let H =

⋃
a<ω1

Ha. Then
H ⊂ Sω ×X. If K is compact in Sω ×X, then there exists n ∈ ω and a finite F ⊂ P such that
K ⊂ Ln × (∪F), where Ln = {∞}∪{mi : i ≤ n and m ∈ ω}. By (2), (Ln × (∪F))∩H is finite,
and K ∩H is finite, hence K is k-closed in Sω ×X. Now, suppose U is any open set in Sω ×X

containing (∞, x), then there exists a neighborhood Ug at ∞ in Sω and a neighborhood Ux at
x in X such that Ug ×Ux ⊂ U where Ug = {∞}∪{mn : m ≥ g(n)} for some g ∈ ωω, thus there
exists a < ω1 with fa(n) > g(n) for infinitely many n ∈ ω. Take na ∈ Ux ∩ Na, and choose
n′ > n with fa(n′) > g(n′), then (fa(n′)n′ , na) ∈ (Ug × Ux) ∩ H ⊂ U ∩ H, thus (∞, x) ∈ H\H,

and H is not closed in X, hence Sω × X is not a k-space, a contradiction.
(b) → (c). Suppose X is a Fréchet space with a point-countable k-network P . By Lemma

2.1, we can assume that P is compact for each P ∈ P . By (b), there exists a countable Px ⊂ P
with x ∈ (∪Px)0 for each x ∈ X. Let V be open in X such that x ∈ V ⊂ V ⊂ (∪Px)0. Then
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V is a σ-compact, Fréchet space with a point-countable k-network, hence V has a countable
k-network by Theorem 5.2 in [10]. By Lemma 2.1, V has a countable compact k-network, and
V is a Kω-space, hence X is a local Kω-space.

(b) → (d). Suppose X is a space with a compact-countable k-network P . By Lemma 2.1,
we can assume that P is compact for each P ∈ P . By (b), P is locally countable, and X has a
locally countable compact k-network, thus X is a local Kω-space.

(c) or (d) → (a). Since Sω1 is a non local Kω, Fréchet space with a compact-countable
k-network, if (c) or (d) holds, then Sω ×Sω1 is not a k-space. By Theorem 1.3, BF (ω2) is false.

Theorem 3.2 The following are equivalent:
(a) BF (ω2) is false.
(b) For each X,Y ∈ K′,X×Y is a k-space if and only if (X,Y ) has the Tanaka’s condition.
Proof Suppose BF (ω2) is false, and X,Y ∈ K′. If (X,Y ) has the Tanaka’s condition,

then X × Y is a k-space. Now, let X × Y be a k-space.
(1) If X and Y contain closed copies of Sω or S2, then Sω × X and Sω × Y are k-spaces.

By Lemma 3.1, X and Y are local Kω-spaces.
(2) If X contains a closed copy of Sω or S2, and Y contains no closed copy of Sω and S2,

then Sω ×Y is a k-space and Y is a stronly Fréchet space by Theorems 3.1 and 1.5 in [12], so Y

is a first countable space by Corollary 3.6 in [10], thus Y is a locally compact space by Lemma
2.2.

(3) If X and Y contain no closed copies of Sω and S2, then X and Y are first countable by
the proof in (2).

In a word, (X,Y ) has the Tanaka’s condition.
Now, we assume that BF (ω2) holds, then Sω × Sω1 is a k-space by Theorem 1.3. It is

obvious that Sω and Sω1 ∈ K′, but (Sω, Sω1) has not the Tanaka’s condition.
Now, we discuss some applications of Theorem 3.2. Let X be a space, and let O be a cover

of X. X is determined by O, if F ⊂ X is closed in X if and only if F ∩C is closed in C for each
C ∈ O. X is dominated by O, if the union of any subcollection O′ of O is closed in X, and
the union is determined by O′. Let A = {Aa : a ∈ A} be a collection of subsets of a space X.
Then A is hereditarily closure-preserving if ∪{Ba : a ∈ A} = ∪{Ba : a ∈ A} whenever Ba ⊂ Aa

for each a ∈ A. Every space is dominated by its a hereditarily closure-preserving closed cover.
We shall write HCP instead of hereditarily closure-preserving.

Every Las̆nev space has a σ-HCP k-network. If a space X has a σ-HCP k-network P , let
P =

⋃
n∈N Pn, where each Pn is HCP in X and Pn ⊂ Pn+1 for each n ∈ N. Put

Dn = {x ∈ X : Pn is not point-finite at x}, Fn = {P\Dn : P ∈ Pn} ∪ {{x} : x ∈ Dn}.

It is easy to check that
⋃

n∈N Fn is a compact-countable k-network for X. If a space X is
dominated by a cover {Xa : a < β}, for each a < β, let

Y0 = X0 and Ya = Xa\ ∪ {Xλ : λ < a}, a > 0.

Then {Ya : a < β} is a compact-finite cover of X. If each Xa has a compact-countable k-
network, then X has also a compact-countable k-network.

Corollary 3.3 The following are equivalent:
(a) BF (ω2) is false.
(b) If X and Y are dominated by k-spaces with a σ-HCP k-network, then X×Y is a k-space

if and only if (X,Y ) has the Tanaka’s condition.
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Proof We prove only that if BF (ω2) is false, X and Y are dominated by k-spaces with a
σ-HCP k-network, and X × Y is a k-space, then (X,Y ) has the Tanaka’s condition. Since X

and Y are dominated by spaces with a compact-countable k-network, X and Y have compact-
countable k-networks. Since X and Y are dominated by σ-spaces, X and Y are also σ-spaces[17],
hence X and Y are point-G8 spaces. By Theorem 3.2, (X,Y ) has the Tanaka’s condition.

For the k-space property and the gf -countability of products of countably many spaces in
the class K′, by the proof of Theorem 2.9, Theorem 2.11 and Theorem 3.2, we have that

Theorem 3.4 The following are equivalent:
(a) BF (ω2) is false.
(b) If {Xi : i ∈ N} ⊂ K′, then

∏
i∈N Xi is a k-space if and only if {Xi} has the Tanaka’s

condition.
Theorem 3.5 The following are equivalent:
(a) BF (ω2) is false.
(b) If {Xi} is a sequence of point-G8, gf-countable spaces with a compact-countable k-

network. Then {Xi} has the Tanaka’s condition if and only if one of two properties holds:
(1)

∏
i∈N Xi is a gf -countable space.

(2)
∏

i∈N Xi is a k-space.
(c) If {Xi} is a sequence of point-G8 spaces having a compact-countable weak base, then

{Xi} has the Tanaka’s condition if and only if
∏

i∈N Xi has a compact-countable weak base.
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