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We prove two mapping theorems on K-spaces: (1) K-spaces are preserved under closed, Lindeliif 

mappings; (2) a perfect inverse image of an N-space is an K-space if and only if it has a G,-diagonal. 
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1. Introduction 

The concept of K-spaces was first introduced by Meara in [7] as a generalization 

of metric spaces and &,-spaces (Michael [6]). The main results of this paper are 

two mapping theorems on K-spaces: 

(1) N-spaces are preserved under closed Lindelijf mappings. This affirmatively 

answers a question posed by Tanaka in [8]. 

(2) A perfect inverse image of an K-space is an K-space if and only if it has a 

G,-diagonal. 

Throughout this paper, all spaces are assumed to be at least T, and regular. All 

mappings are continuous and surjective. A mapping f from X onto Y is to be 

denoted by f: X + Y. N denotes the set of positive integers. 

Let X be a topological space. A family 9 of closed subsets of X is a k-network 

for X if for every compact set K c X and neighborhood U of K, there is a finite 

9’~ 9 so that K c LJ 9 c U. 9 is a cs-network for X if for every convergent 

sequence Z in X and neighborhood U of Z, there is a FE 9 so that Z is eventually 

in F and F c U. A regular space with u-locally-finite k-network is called an K-space 

[71. 
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2. Closed images 

Mapping f: X + Y is called Lindeliif if for each y E Y fiber f -‘(y) is a Lindeliif 

subspace of X; f is called compact-covering [6] if every compact subset of Y is 

the image of a compact subset of X. 

Lemma 2.1. If f: X + Y is closed LindeliiJ; then f is a compact-covering. 

Proof. Let K be a compact subset of Y; then f-‘(K) is a Lindeliif subset of X. 

But if g =f kyK), then g is a closed mapping from the paracompact space f-‘(K) 

onto K. By Proposition 7.2 in [6], g is compact-covering. Since K is compact, there 

exists a compact subset K of f-‘(K) such that g(L) = K. Also, L is a compact 

subset of X, and f(L) = K. 0 

Theorem 2.2. K-spaces are preserved under closed Lindebf mappings. 

Proof. Suppose X is an K-space, and f: X + Y is closed Lindelof. X has a a-locally- 

finite closed k-network 9. Put 9= {f(P) 1 P E 9’). Since f is closed Lindeliif, 9 is 

a a-closure-preserving and locally-countable collection of closed subsets of Y. It is 

clear that the compact-covering image of a k-network is a k-network. 

Hence, by Lemma 2.1, 9 is a cT-closure-preserving and a-locally-countable closed 

k-network. Foged [ 1, Theorem 4, (a) + (d)] proved that a space with a-locally-finite 

closed k-network has a a-discrete cs-network. It is not difficult to check that, in his 

proof, the condition “cT-locally-finite closed k-network” can be replaced by “c- 

locally-countable and a-closure-preserving closed k-network”. Therefore a space 

with a-locally-countable and a-closure-preserving closed k-network is an K-space. 

Therefore Y is an K-space. 0 

Remark 1. The following question is posed by Tanaka in [8]: Are the spaces which 

are closed Lindelijf images of metric spaces K-spaces? Theorem 2.2 answers the 

question affirmatively. 

Remark 2. For each LY < w, , let I, = [0, l] with usual topology, and let X be quotient 

space of O,,,, I, obtained by identifying (0). Then X is a LaSnev space and is not 

an K-space (by [5, Proposition 6.41). Hence N-spaces are not preserved under closed 

mappings. 

Theorem 2.3. The following properties of a space are equivalent: 

(a) X is a Frbchet and K-space. 

(b) X is a closed LindelGf image of a metric space. 

Proof. (b) + (a). It is known that closed mappings preserve the Frechet property. 

By Theorem 2.2, X is an K-space. 
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(a) + (b). Suppose X is a Frtchet and K-space. Foged [2, Theorem l] has shown 

that X is a Frechet space with a-hereditarily closure-preserving k-network if and 

only if X is a Last-rev space (a space which is a closed image of a metric space). 

Let M be a metric space, f: M + X a closed mapping. Since M is a paracompact 

K-space, and X a k-space with point-countable closed k-network, according to [5, 

Proposition 6.41 for each y E Y, df -l(y) (boundary of f-‘(y)) is Lindeliif. Thus 

there exists a closed subset M’ of M such that g = f 1 Ms: M’+ X is closed Lindeliif 

with g(M’) = X. Hence X is a closed Lindeliif image of a metric space. 0 

3. Perfect inverse images 

For a topological space X, let 7’(X) = {K c X 1 K is a nonempty compact subset 

of X}. If Uu and “Ir are collections of subsets of X, let Ou A 2’= { U n VI W E 021 and 

V~~}.ForanyAcX,let(~),={CT~0211UnA#0}andst(A,~)=U(~),. 

We consider the following properties of space X. 

(A) For any open cover of X there exists a a-discrete refinement 9 such that 

every compact subset of X is covered by a finite subcollection of 9. 

(B) For any open cover of X there exists a sequence ( $) of open refinements 

which satisfies the condition that for each K E .7{(X), there exist Ki E 7t(X)(ismj 

such that K =l_ji~,, K, and I(%,J~,/ = lciGmj. 

(C) There exists a sequence (9,,) of open covers such that for each K E r{(X), 

K = n,, st( K, Cc?,,). 

Lemma 3.1. If Y is an U-space and f: X + Y is a perfect mapping, then X has property 

(A). 

Proof. Since Y is an K-space, Y has a v-discrete k-network (by Foged [ 1, Theorem 

41). Suppose p = U, 9’, is a k-network for Y, each 9, is a discrete collection of 

subsets of Y. 

Suppose % is any open cover of X. For each y E Y we can find a finite subcollection 

%(y)c Ou such that f-‘(y)cU Q(y). Let G(y)= Y-f(X-IJ Q(y)), then %I= 

{G(y) I y E Y} is an open cover of Y. By the definition of k-network and the regularity 

of Y, without loss of generality, we may assume 9 is a refinement of 9. Consequently 

for each P E 9 there exist U(i, P) E Q such that f -‘(I’) = Uzsm, U(i, P). Let 

9(n, i) = {f-‘(P) n U(i, P) I P E P,}. Then .9= lJn,, 9(n, i) satisfies (A). q 

Lemma 3.2. (A) + (B). 

Proof. Let 021 be an open cover of a space X and take a u-discrete refinement 

9= U, 9,, of % with the property (A). Let 9,, = {F(n, (Y) I a E A,,}. By regularity, 

we may assume each element of 9 is a closed subset of X. For each n E N, (Y E A,, 
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pick U(n, a)E %! such that F(n, a) = LJ(n, a), and Put W(n, a) = 

U(n,a)-u{F(n,p)lP~A,-{a}}. We define 

It follows that (‘JV,,) satisfies (B). 

It is clear that (W,,) is the sequence of open refinement of “II. To see that ( W,,) 
satisfies (B), let K E Y{(X), by the property (A), there exists a finite subcollection 

sl={Filism} of (9) K which covers K. For each i E { 1,2, . . . , m}, there exists a 

ni~N such that Fie9,,,. Then KnFi~Yl(X)(ism), K=Ui,,KnFi and 

I(%,) KnF,I=l. 0 

Lemma 3.3. (B) + G,-diagonal+ (C). 

Proof. Suppose a space X with property (B) has a G,-diagonal. Clearly X is a 

submetacompact (i.e., O-refinable) space with a G6-diagonal, so X has a 

Gg-diagonal [4, Theorem 2.111. Let (Y&n) be a Gg-diagonal sequence, i.e., {x} = 

n, st(x, %,,) for each XE X. We may assume that ?Z&+, refines 9?,,. Now we prove 

for each K E x(X), K = n,, st( K, gn,). Suppose x E X -K; then {X - st(x, %,,) 1 n E 

N} is an open cover of the compact subset K, so there exists a n EN such that 

K c X -st(x, g,,). Therefore K n st(x, %,,) = 0, i.e., x & st( K, S,,). Hence K = 

f-7, st(K %I,). 
Now, we use the regularity of X and property (B) to inductively define, for each 

m EN, a sequence (‘V,,,:),, of open covers for X such that 

(a) for each n EN, {VI VE Tf,,,n} is a refinement of (/ji,,,-_m Vi,j) A (/jkGm ?&k); 

(b) (Ym,,), is a sequence satisfying the condition of property (B). 

We prove for each K E YC( X), f-l,,+ st( K, Y,,,k) = K. For each n E N, take s > n. Since 

the sequence ( ‘VY,k)k satisfies (b), there exists Ki E 3Y(X)(i,hl such that K = Uish Ki 

with I(‘vJ~,I = 1. Then 

Pick r > max{s, k, , k2, . . . , k,,}; consequently, 

n m,k SttK "Ir,,k) = st(K vr,,) 

= Utsh st(Ki, vr,~) c Ui=h st(K;v vs,k,) c st(K grin). 

Hence 

nm,k st(K, vrn,k) c n, St(K, %) = K. 

SO K =nm,k St(K, "Ir,,kh 

Theorem 3.4. Suppose there exists a perfect mapping f from a topological space X on to 

an K-space Y. Then X is an K-space ifand only if it satisjies any of the following: 
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(a) X has a G8-diagonal. 

(b) X has a point-countable k-network. 

Proof. Necessity is obvious. 

Sufficiency: Since a a-space has a G,-diagonal, by Corollary 3.8 in [5], it is 

sufficient to show that if X has a G6-diagonal, then X is an EC-space. 

Suppose X has a G,-diagonal. By Lemmas 3.1,3.2, and 3.3, there exists a sequence 

(+I&) of open covers for X such that for each K E .7’(X), K = nn st(K, %,,). We can 

assume 9&+, refines gH. For each n E N, by Lemma 3.1, ?I,, has a a-locally-finite 

closed refinement 9(n) such that every compact subset of X is covered by a finite 

subcollection of 9(n). Denote by .9(n) = Urn 9(n, m) where each 9(n, m) is a 

locally-finite collection of subsets of X. We can assume 9( n, m) c 9( n, m + 1) for 

each m EN. 

Since Y is an K-space, let IJk %(k) be a k-network for Y where each 9(k) is 

locally-finite and Z(k) c Z( k + 1) for each k E N. Let 9(k) = {f-‘(Q) 1 Q E Z(k)}; 

then 9(k) is a locally-finite collection of closed subsets of X. Put 

P(n, m, k) = 9(n, m) A 9(k). 

Clearly 9’( n, m, k) is locally-finite for each n, m, k E N. 

We complete the proof by showing that 9? = lJn,m,k P(n, m, k) is a k-network for 

X. For an open subset W and a compact subset K c W c X, since K = n,, st( K, yn), 

{W)u{X-st(K, %)I n E N} is an open cover of compact subset f-‘f( K) of X. Thus 

there exists a n EN such that f-‘f(K) c WV (X -st(K, F&n)), so st(K, %,,) I-I 

f-‘f( K) c W. For each x ~f~‘f( K) - W, since x r? st( K, gR), there exists an open 

set V(x) containing x with V(x)nst(K, +I,,)=@ Let G=Wu 

(I._,{V(x)lx~f~‘f(K)- W}), then f(K)c Y-f(X-G). So there exists a finite 

Z’(k) c %(k) such that f(K) c U Z’(k) c Y -f(X - G) for some k E N. Take 

9’(k) = {f-‘(Q) 1 Q E e’(k)}; then f-‘f( K) c U 9’(k) c G. On the other hand, by 

the property of 9(n), there exists a finite F(n, m) c (9(n, m))K such that K c 

LJ 9’( n, m) c st( K, gn,) for some m EN. Put ??‘( n, m, k) = 9’( n, m) A 9’(k). It is easy 

to check that K c U 9’( n, m, k) c W. q 

Corollary 3.5. Suppose Y is an K-space and f: X + Y is an open, closed, andjnite-to- 

one mapping. Then X is an N-space. 

Proof. Since K-space is a a-space, X is a u-space [3]. Then X has a G,-diagonal. 

By Theorem 3.4, X is an K-space. tl 
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