MAPPING THEOREMS ON N-SPACES

Shou LIN

Department of Mathematics, Suzhou University, Suzhou, People's Republic of China

Received 30 March 1987 Revised 18 September 1987

We prove two mapping theorems on \aleph -spaces: (1) \aleph -spaces are preserved under closed, Lindelöf mappings; (2) a perfect inverse image of an \aleph -space is an \aleph -space if and only if it has a G_{δ} -diagonal.

AMS (MOS) Subj. Class.: Primary 5410	
k-network	G_{δ} -diagonal
ℕ-space	closed Lindelöf mapping
Fréchet space	compact-covering mapping
Lašnev space	perfect mapping

1. Introduction

The concept of \aleph -spaces was first introduced by Meara in [7] as a generalization of metric spaces and \aleph_0 -spaces (Michael [6]). The main results of this paper are two mapping theorems on \aleph -spaces:

- (1) N-spaces are preserved under closed Lindelöf mappings. This affirmatively answers a question posed by Tanaka in [8].
- (2) A perfect inverse image of an \aleph -space is an \aleph -space if and only if it has a G_{δ} -diagonal.

Throughout this paper, all spaces are assumed to be at least T_1 and regular. All mappings are continuous and surjective. A mapping f from X onto Y is to be denoted by $f: X \to Y$. N denotes the set of positive integers.

Let X be a topological space. A family \mathscr{F} of closed subsets of X is a k-network for X if for every compact set $K \subset X$ and neighborhood U of K, there is a finite $\mathscr{F}' \subset \mathscr{F}$ so that $K \subset \bigcup \mathscr{F}' \subset U$. \mathscr{F} is a cs-network for X if for every convergent sequence Z in X and neighborhood U of Z, there is a $F \in \mathscr{F}$ so that Z is eventually in F and $F \subset U$. A regular space with σ -locally-finite k-network is called an \aleph -space [7].

2. Closed images

Mapping $f: X \to Y$ is called Lindelöf if for each $y \in Y$ fiber $f^{-1}(y)$ is a Lindelöf subspace of X; f is called compact-covering [6] if every compact subset of Y is the image of a compact subset of X.

Lemma 2.1. If $f: X \rightarrow Y$ is closed Lindelöf, then f is a compact-covering.

Proof. Let K be a compact subset of Y; then $f^{-1}(K)$ is a Lindelöf subset of X. But if $g = f|_{f^{-1}(K)}$, then g is a closed mapping from the paracompact space $f^{-1}(K)$ onto K. By Proposition 7.2 in [6], g is compact-covering. Since K is compact, there exists a compact subset K of $f^{-1}(K)$ such that g(L) = K. Also, L is a compact subset of X, and f(L) = K. \Box

Theorem 2.2. N-spaces are preserved under closed Lindelöf mappings.

Proof. Suppose X is an \aleph -space, and $f: X \to Y$ is closed Lindelöf. X has a σ -locally-finite closed k-network \mathcal{P} . Put $\mathcal{F} = \{f(P) \mid P \in \mathcal{P}\}$. Since f is closed Lindelöf, \mathcal{F} is a σ -closure-preserving and locally-countable collection of closed subsets of Y. It is clear that the compact-covering image of a k-network is a k-network.

Hence, by Lemma 2.1, \mathscr{F} is a σ -closure-preserving and σ -locally-countable closed k-network. Foged [1, Theorem 4, (a) \rightarrow (d)] proved that a space with σ -locally-finite closed k-network has a σ -discrete cs-network. It is not difficult to check that, in his proof, the condition " σ -locally-finite closed k-network" can be replaced by " σ -locally-countable and σ -closure-preserving closed k-network". Therefore a space with σ -locally-countable and σ -closure-preserving closed k-network is an \aleph -space. Therefore Y is an \aleph -space.

Remark 1. The following question is posed by Tanaka in [8]: Are the spaces which are closed Lindelöf images of metric spaces \aleph -spaces? Theorem 2.2 answers the question affirmatively.

Remark 2. For each $\alpha < \omega_1$, let $I_{\alpha} = [0, 1]$ with usual topology, and let X be quotient space of $\bigoplus_{\alpha < \omega_1} I_{\alpha}$ obtained by identifying {0}. Then X is a Lašnev space and is not an \aleph -space (by [5, Proposition 6.4]). Hence \aleph -spaces are not preserved under closed mappings.

Theorem 2.3. The following properties of a space are equivalent:

- (a) X is a Fréchet and \aleph -space.
- (b) X is a closed Lindelöf image of a metric space.

Proof. (b) \rightarrow (a). It is known that closed mappings preserve the Fréchet property. By Theorem 2.2, X is an \aleph -space. (a) \rightarrow (b). Suppose X is a Fréchet and \aleph -space. Foged [2, Theorem 1] has shown that X is a Fréchet space with σ -hereditarily closure-preserving k-network if and only if X is a Lašnev space (a space which is a closed image of a metric space). Let M be a metric space, $f: M \rightarrow X$ a closed mapping. Since M is a paracompact \aleph -space, and X a k-space with point-countable closed k-network, according to [5, Proposition 6.4] for each $y \in Y$, $\partial f^{-1}(y)$ (boundary of $f^{-1}(y)$) is Lindelöf. Thus there exists a closed subset M' of M such that $g = f|_{M'}: M' \rightarrow X$ is closed Lindelöf with g(M') = X. Hence X is a closed Lindelöf image of a metric space. \Box

3. Perfect inverse images

For a topological space X, let $\mathscr{X}(X) = \{K \subset X \mid K \text{ is a nonempty compact subset}$ of X}. If \mathscr{U} and \mathscr{V} are collections of subsets of X, let $\mathscr{U} \land \mathscr{V} = \{U \cap V \mid U \in \mathscr{U} \text{ and}$ $V \in \mathscr{V}\}$. For any $A \subset X$, let $(\mathscr{U})_A = \{U \in \mathscr{U} \mid U \cap A \neq \emptyset\}$ and $\operatorname{st}(A, \mathscr{U}) = \bigcup (\mathscr{U})_A$.

We consider the following properties of space X.

(A) For any open cover of X there exists a σ -discrete refinement \mathcal{F} such that every compact subset of X is covered by a finite subcollection of \mathcal{F} .

(B) For any open cover of X there exists a sequence (\mathscr{G}_n) of open refinements which satisfies the condition that for each $K \in \mathscr{H}(X)$, there exist $K_i \in \mathscr{H}(X)_{(i \leq m)}$ such that $K = \bigcup_{i \leq m} K_i$ and $|(\mathscr{G}_{n_i})_{K_i}| = 1_{(i \leq m)}$.

(C) There exists a sequence (\mathscr{G}_n) of open covers such that for each $K \in \mathscr{K}(X)$, $K = \bigcap_n \overline{\operatorname{st}(K, \mathscr{G}_n)}$.

Lemma 3.1. If Y is an \aleph -space and $f: X \rightarrow Y$ is a perfect mapping, then X has property (A).

Proof. Since Y is an \aleph -space, Y has a σ -discrete k-network (by Foged [1, Theorem 4]). Suppose $\mathscr{P} = \bigcup_n \mathscr{P}_n$ is a k-network for Y, each \mathscr{P}_n is a discrete collection of subsets of Y.

Suppose \mathcal{U} is any open cover of X. For each $y \in Y$ we can find a finite subcollection $\mathcal{U}(y) \subset \mathcal{U}$ such that $f^{-1}(y) \subset \bigcup \mathcal{U}(y)$. Let $G(y) = Y - f(X - \bigcup \mathcal{U}(y))$, then $\mathcal{G} = \{G(y) | y \in Y\}$ is an open cover of Y. By the definition of k-network and the regularity of Y, without loss of generality, we may assume \mathcal{P} is a refinement of \mathcal{G} . Consequently for each $P \in \mathcal{P}$ there exist $U(i, P) \in \mathcal{U}$ such that $f^{-1}(P) \subset \bigcup_{i \leq m_P} U(i, P)$. Let $\mathcal{F}(n, i) = \{f^{-1}(P) \cap U(i, P) | P \in \mathcal{P}_n\}$. Then $\mathcal{F} = \bigcup_{n,i} \mathcal{F}(n, i)$ satisfies (A). \Box

Lemma 3.2. $(A) \rightarrow (B)$.

Proof. Let \mathcal{U} be an open cover of a space X and take a σ -discrete refinement $\mathcal{F} = \bigcup_n \mathcal{F}_n$ of \mathcal{U} with the property (A). Let $\mathcal{F}_n = \{F(n, \alpha) \mid \alpha \in A_n\}$. By regularity, we may assume each element of \mathcal{F} is a closed subset of X. For each $n \in \mathbb{N}$, $\alpha \in A_n$,

pick $U(n, \alpha) \in \mathcal{U}$ such that $F(n, \alpha) \subset U(n, \alpha)$, and put $W(n, \alpha) = U(n, \alpha) - \bigcup \{F(n, \beta) | \beta \in A_n - \{\alpha\}\}$. We define

$$\mathcal{W}_n = \{ W(n, \alpha) \mid \alpha \in A_n \} \cup \{ U - \bigcup \mathcal{F}_n \mid U \in \mathcal{U} \}.$$

It follows that (\mathcal{W}_n) satisfies (B).

It is clear that (\mathcal{W}_n) is the sequence of open refinement of \mathcal{U} . To see that (\mathcal{W}_n) satisfies (B), let $K \in \mathcal{H}(X)$, by the property (A), there exists a finite subcollection $\mathcal{F}' = \{F_i \mid i \leq m\}$ of $(\mathcal{F})_K$ which covers K. For each $i \in \{1, 2, ..., m\}$, there exists a $n_i \in \mathbb{N}$ such that $F_i \in \mathcal{F}_{n_i}$. Then $K \cap F_i \in \mathcal{H}(X)_{(i \leq m)}$, $K = \bigcup_{i \leq m} K \cap F_i$ and $|(\mathcal{W}_{n_i})_{K \cap F_i}| = 1$. \Box

Lemma 3.3. (B) + G_{δ} -diagonal \rightarrow (C).

Proof. Suppose a space X with property (B) has a G_{δ} -diagonal. Clearly X is a submetacompact (i.e., θ -refinable) space with a G_{δ} -diagonal, so X has a G_{δ}^* -diagonal [4, Theorem 2.11]. Let (\mathscr{G}_n) be a G_{δ}^* -diagonal sequence, i.e., $\{x\} = \bigcap_n \overline{\operatorname{st}(x, \mathscr{G}_n)}$ for each $x \in X$. We may assume that \mathscr{G}_{n+1} refines \mathscr{G}_n . Now we prove for each $K \in \mathscr{H}(X)$, $K = \bigcap_n \operatorname{st}(K, \mathscr{G}_n)$. Suppose $x \in X - K$; then $\{X - \overline{\operatorname{st}(x, \mathscr{G}_n)} | n \in \mathbb{N}\}$ is an open cover of the compact subset K, so there exists a $n \in \mathbb{N}$ such that $K \subset X - \overline{\operatorname{st}(x, \mathscr{G}_n)}$. Therefore $K \cap \overline{\operatorname{st}(x, \mathscr{G}_n)} = \emptyset$, i.e., $x \notin \operatorname{st}(K, \mathscr{G}_n)$. Hence $K = \bigcap_n \operatorname{st}(K, \mathscr{G}_n)$.

Now, we use the regularity of X and property (B) to inductively define, for each $m \in \mathbb{N}$, a sequence $(\mathcal{V}_{m,n})_n$ of open covers for X such that

- (a) for each $n \in \mathbb{N}$, $\{\overline{V} \mid V \in \mathcal{V}_{m,n}\}$ is a refinement of $(\bigwedge_{i,j < m} \mathcal{V}_{i,j}) \land (\bigwedge_{k \leq m} \mathcal{G}_k);$
- (b) $(\mathcal{V}_{m,n})_n$ is a sequence satisfying the condition of property (B).

We prove for each $K \in \mathcal{H}(X)$, $\bigcap_{m,k} \overline{\operatorname{st}(K, \mathcal{V}_{m,k})} = K$. For each $n \in \mathbb{N}$, take s > n. Since the sequence $(\mathcal{V}_{s,k})_k$ satisfies (b), there exists $K_i \in \mathcal{H}(X)_{(i \le h)}$ such that $K = \bigcup_{i \le h} K_i$ with $|(\mathcal{V}_{s,k_i})_{K_i}| = 1$. Then

$$\overline{\operatorname{st}(K_i, \mathscr{V}_{s,k_i})} = \bigcup \{ \overline{V} | V \in (\mathscr{V}_{s,k_i})_{K_i} \} \subset \operatorname{st}(K_i, \mathscr{V}_{n,n}) \subset \operatorname{st}(K_i, \mathscr{G}_n).$$

Pick $r > \max\{s, k_1, k_2, \ldots, k_n\}$; consequently,

$$\bigcap_{m,k} \overline{\operatorname{st}(K, \mathcal{V}_{m,k})} \subset \overline{\operatorname{st}(K, \mathcal{V}_{r,1})}$$
$$= \bigcup_{i \leq h} \overline{\operatorname{st}(K_i, \mathcal{V}_{r,1})} \subset \bigcup_{i \leq h} \overline{\operatorname{st}(K_i, \mathcal{V}_{s,k_i})} \subset \operatorname{st}(K, \mathcal{G}_n).$$

Hence

$$\bigcap_{m,k} \overline{\operatorname{st}(K, \mathscr{V}_{m,k})} \subset \bigcap_n \operatorname{st}(K, \mathscr{G}_n) = K.$$

So $K = \bigcap_{m,k} \overline{\operatorname{st}(K, \mathcal{V}_{m,k})}.$

Theorem 3.4. Suppose there exists a perfect mapping f from a topological space X onto an \aleph -space Y. Then X is an \aleph -space if and only if it satisfies any of the following:

- (a) X has a G_{δ} -diagonal.
- (b) X has a point-countable k-network.

Proof. Necessity is obvious.

Sufficiency: Since a σ -space has a G_{δ} -diagonal, by Corollary 3.8 in [5], it is sufficient to show that if X has a G_{δ} -diagonal, then X is an \aleph -space.

Suppose X has a G_{δ} -diagonal. By Lemmas 3.1, 3.2, and 3.3, there exists a sequence (\mathscr{G}_n) of open covers for X such that for each $K \in \mathscr{H}(X)$, $K = \bigcap_n \overline{\operatorname{st}(K, \mathscr{G}_n)}$. We can assume \mathscr{G}_{n+1} refines \mathscr{G}_n . For each $n \in \mathbb{N}$, by Lemma 3.1, \mathscr{G}_n has a σ -locally-finite closed refinement $\mathscr{F}(n)$ such that every compact subset of X is covered by a finite subcollection of $\mathscr{F}(n)$. Denote by $\mathscr{F}(n) = \bigcup_m \mathscr{F}(n, m)$ where each $\mathscr{F}(n, m)$ is a locally-finite collection of subsets of X. We can assume $\mathscr{F}(n, m) \subset \mathscr{F}(n, m+1)$ for each $m \in \mathbb{N}$.

Since Y is an \aleph -space, let $\bigcup_k \mathscr{Z}(k)$ be a k-network for Y where each $\mathscr{Z}(k)$ is locally-finite and $\mathscr{Z}(k) \subset \mathscr{Z}(k+1)$ for each $k \in \mathbb{N}$. Let $\mathscr{D}(k) = \{f^{-1}(Q) | Q \in \mathscr{Z}(k)\}$; then $\mathscr{D}(k)$ is a locally-finite collection of closed subsets of X. Put

$$\mathscr{P}(n, m, k) = \mathscr{F}(n, m) \wedge \mathscr{D}(k).$$

Clearly $\mathcal{P}(n, m, k)$ is locally-finite for each $n, m, k \in \mathbb{N}$.

We complete the proof by showing that $\mathcal{P} = \bigcup_{n \ m \ k} \mathcal{P}(n, m, k)$ is a k-network for X. For an open subset W and a compact subset $K \subset W \subset X$, since $K = \bigcap_n \overline{\operatorname{st}(K, \mathscr{G}_n)}$, $\{W\} \cup \{X - \overline{\operatorname{st}(K, \mathscr{G}_n)} \mid n \in \mathbb{N}\}$ is an open cover of compact subset $f^{-1}f(K)$ of X. Thus there exists a $n \in \mathbb{N}$ such that $f^{-1}f(K) \subset W \cup (X - \overline{\operatorname{st}(K, \mathscr{G}_n)})$, so $\overline{\operatorname{st}(K, \mathscr{G}_n)} \cap$ $f^{-1}f(K) \subset W$. For each $x \in f^{-1}f(K) - W$, since $x \notin \overline{\operatorname{st}(K, \mathscr{G}_n)}$, there exists an open V(x)containing x with $V(x) \cap \overline{\operatorname{st}(K, \mathscr{G}_n)} = \emptyset.$ Let $G = W \cup$ set $(\bigcup \{V(x) | x \in f^{-1}f(K) - W\})$, then $f(K) \subset Y - f(X - G)$. So there exists a finite $\mathscr{Z}'(k) \subset \mathscr{Z}(k)$ such that $f(K) \subset \bigcup \mathscr{Z}'(k) \subset Y - f(X - G)$ for some $k \in \mathbb{N}$. Take $\mathscr{D}'(k) = \{f^{-1}(Q) \mid Q \in \mathscr{Z}'(k)\}; \text{ then } f^{-1}f(K) \subset \bigcup \mathscr{D}'(k) \subset G. \text{ On the other hand, by}$ the property of $\mathcal{F}(n)$, there exists a finite $\mathcal{F}'(n,m) \subset (\mathcal{F}(n,m))_K$ such that $K \subset$ $\bigcup \mathscr{F}'(n, m) \subset \operatorname{st}(K, \mathscr{G}_n)$ for some $m \in \mathbb{N}$. Put $\mathscr{P}'(n, m, k) = \mathscr{F}'(n, m) \land \mathscr{D}'(k)$. It is easy to check that $K \subset \bigcup \mathscr{P}'(n, m, k) \subset W$. \Box

Corollary 3.5. Suppose Y is an \aleph -space and $f: X \rightarrow Y$ is an open, closed, and finite-toone mapping. Then X is an \aleph -space.

Proof. Since \aleph -space is a σ -space, X is a σ -space [3]. Then X has a G_{δ} -diagonal. By Theorem 3.4, X is an \aleph -space. \Box

Acknowledgement

The author would like to express his gratitude to Professor Kuo-Shih Kao for his direction.

References

- [1] L. Foged, Characterization of N-spaces, Pacific J. Math. 110 (1984) 59-63.
- [2] L. Foged, A characterization of closed images of metric spaces, Proc. Amer. Math. Soc. 95 (1985) 487-490.
- [3] R.F. Gittings, Open mapping theory, Set-Theoretic Topology (Academic Press, New York, 1977) 141-191.
- [4] G. Gruenhage, Generalized metric spaces, Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 432-502.
- [5] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (1984) 303-332.
- [6] E. Michael, 8-spaces, J. Math. Mech. 15 (1966) 983-1002.
- [7] P. O'Meara, A new class of topological spaces, University of Alberta Dissertation, 1966.
- [8] Y. Tanaka, A characterization for the products of k-and-N-spaces and related results, Proc. Amer. Math. Soc. 59 (1976) 149-155.