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Let FP (X) denote the free paratopological group over a topological space X. Two 
topological spaces X and Y are called MP -equivalent if FP (X) and FP (Y ) are 
topologically isomorphic. At first, it is shown that there exist non-homeomorphic 
topological spaces X and Y such that FP (X) and FP (Y ) are topologically 
isomorphic. Secondly, MP -invariance of free paratopological groups is investigated. 
It is established that pseudocompactness, hereditary Lindelöfness, hereditary 
separability and the property of being a cosmic space are all MP -invariant, which 
generalizes some conclusions valid for free topological groups to free paratopological 
groups. Finally, a few questions about MP -equivalence of free paratopological 
groups are posed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

A topological group is a group G with a topology such that the multiplication mapping of G ×G to G is 
jointly continuous and the inverse mapping of G on itself is also continuous. In 1941, free topological groups 
in the sense of A. Markov were introduced [12]. M -equivalence of free topological groups were investigated 
in [2,7,13,15,20], etc. Two completely regular spaces X and Y are called M -equivalent (A-equivalent) [13]
if F (X) and F (Y ) (A(X) and A(Y )) are topologically isomorphic, where F (X) (A(X)) denotes the free 
(Abelian) topological group on X.
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A paratopological group is a group G with a topology such that the multiplication mapping of G × G

to G is jointly continuous. The absence of continuity of inversion, the typical situation in paratopological 
groups, makes the study in this area very different from that in topological groups. As a generalization 
of free topological groups, in 2002, S. Romaguera, M. Sanchis, and M. Tkachenko [19] introduced free 
paratopological groups on arbitrary topological spaces and discussed some of their topological properties.

Definition 1.1. [19] Let X be a subspace of a paratopological group G. Suppose that
(1) the set X generates G algebraically, that is, 〈X〉 = G; and
(2) every continuous mapping f : X → H of X to an arbitrary paratopological group H extends to a 

continuous homomorphism f̂ : G → H.
Then G is called the Markov free paratopological group (briefly, free paratopological group) on X and is 

denoted by FP (X).

If all groups in the above definition are Abelian, we obtain the definition of Markov free Abelian paratopo-
logical group (briefly, free Abelian paratopological group) on X, which is denoted by AP (X).

Our main motivation to do this work arises from [2, Open Problem 7.4.4], posed by A. Arhangel’skǐı and 
M. Tkachenko. This guides us to discuss which important results of free topological groups can be generalized 
to free paratopological groups. Around this subject, some publications about free paratopological groups 
have emerged, for example, see [3,4,9,10,16,17,19], etc.

In this paper, inspired by the concept M -equivalence of free topological groups, we shall reasonably 
introduce the notion of MP -equivalence of the free paratopological group FP (X) on an arbitrary topological 
space X.

Definition 1.2. Two topological spaces X and Y are called MP -equivalent if FP (X) and FP (Y ) are topo-
logically isomorphic.

Definition 1.3. Two topological spaces X and Y are called AP -equivalent if AP (X) and AP (Y ) are topo-
logically isomorphic.

A topological property P is called MP -invariant (AP -invariant) if every topological space Y

MP -equivalent (AP -equivalent) to a topological space X with P also has the property P.
This paper is organized as follows.
At first, we shall show that there exist non-homeomorphic topological spaces X and Y such that FP (X)

and FP (Y ) are topologically isomorphic. Secondly, we make the first step towards the study of which 
topological properties are MP -invariant. We generalize a few results valid for free topological groups to 
free paratopological groups. Namely, we shall prove that pseudocompactness is an AP -invariant property 
and, a fortiori, MP -invariant property, and that P is MP -invariant if P is a hereditary, countably additive 
topological property. In particular, hereditary Lindelöfness, hereditary separability and the property of 
being a cosmic space are all MP -invariant. In addition, a few questions about MP -equivalence of free 
paratopological groups are posed.

In the paper, Fa(X) (Aa(X)) denotes the algebraic free group (free Abelian group) on non-empty set 
X and e (0) is the identity of Fa(X) (Aa(X)). The set X is called the free basis of Fa(X) (Aa(X)). Here 
are some details, for instance, see [2]. Every g ∈ Fa(X) distinct from e has the form g = xε1

1 · · ·xεn
n , where 

x1, ..., xn ∈ X and ε1, ..., εn = ±1. This expression or word for g is called reduced if it contains no pair of 
consecutive symbols of the form xx−1 or x−1x and we say in this case that the length l(g) of g equals to n. 
Every element g ∈ Fa(X) distinct from the identity e can be uniquely written in the form g = xr1

1 xr2
2 · · ·xrn

n , 
where n ≥ 1, ri ∈ Z \ {0}, xi ∈ X and xi �= xi+1 for every i = 1, ..., n − 1. Such an expression is called the 
normal form of g. Similar assertions (with the obvious changes for commutativity) are valid for Aa(X).



Z. Cai, S. Lin / Topology and its Applications 215 (2017) 35–44 37
Remark 1.4. It has been shown that the topology of FP (X) (AP (X)) is the finest paratopological group 
topology on the group Fa(X) (Aa(X)) which induces the original topology on X [19].

For every non-negative integer n, denote by FPn(X) (APn(X)) the subspace of the free paratopological 
group FP (X) (AP (X)) that consists of all words of reduced length ≤ n with respect to the free basis X.

Remark 1.5. If X is a T1-space, then FP (X) is also T1, X−1 is closed and discrete, and the subspaces X
and FPn(X) of FP (X) are all closed in FP (X) for every non-negative integer n [3]. The same is true for 
AP (X) [17].

In what follows, the subspace X of FP (X) and AP (X) is assumed to be T1 in the paper. For some 
terminology unstated here, readers may refer to [2,5].

2. Existence of non-homeomorphic topological spaces X and Y such that FP (X) and FP (Y ) are 
topologically isomorphic

Clearly, two homeomorphic topological spaces are MP -equivalent, but we shall prove in Theorem 2.7
that the converse fails to be true. Let us recall a few related notions. Let P be a cover of a topological 
space X. The space X is determined by P [8], or P is generating in X [2] if U ⊂ X is open (closed) in 
X if and only if U ∩ P is open (closed) in P for every P ∈ P. If a topological space X can be expressed 
as be the union of an increasing sequence {Xn : n ∈ N} of its compact subsets Xn and is determined by 
{Xn : n ∈ N}, then X is called a kω-space [6] and X = ∪{Xn : n ∈ N} is a kω-decomposition of X. It is well 
known that if both X and Y are Hausdorff kω-spaces, then X × Y is also a kω-space [11]. It is not difficult 
to verify that if ∪{Xn : n ∈ N} is a kω-decomposition of a topological space X and K is a compact subset 
of X, then K ⊂ Xn for some n.

We need a few technical lemmas. Recall that A topological space X is called functionally Hausdorff if 
for any distinct points x and y of X, there exists a continuous function f : X → [0, 1] such that f(x) = 0
and f(y) = 1. Obviously, every Tychonoff space is functionally Hausdorff and every functionally Hausdorff 
space is Hausdorff.

Lemma 2.1. Let ∪{Xn : n ∈ N} be a kω-decomposition of a functionally Hausdorff countable kω-space X. 
Then FP (X) is determined by {FP (Xn, X) : n ∈ N}, where every FP (Xn, X) denotes the subgroup of 
FP (X) generated by Xn.

Proof. We write X = {xn : n ∈ N}. For every n ∈ N, let Hn = {xi : i ≤ n} and En = {x−1
i : i ≤ n}. 

Obviously, for every n ∈ N, there exists mn ∈ N such that Hn ⊂ Xmn
. Without loss of generality, we may 

assume mi < mi+1 for every i ∈ N. Put Y = X ∪X−1 and Yn = En ∪Xmn
for every n ∈ N. The space X−1

being discrete by Remark 1.5, the space Y is determined by {Yn : n ∈ N}. For every n ∈ N, put

Kn = tn((Yn ∪ {e})n),

where tn denotes the multiplication mapping of (FP (X))n to FP (X). Then Kn is compact by the com-
pactness of Yn and the continuity of the mapping tn. Obviously,

FP (X) = ∪{Kn : n ∈ N}.

Claim. The space FP (X) is determined by {Kn : n ∈ N}.
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Let τ be the original topology of the free paratopological group FP (X). We define a new topology τ∗

on the set Fa(X) as follows. A subset O of Fa(X) is in τ∗ if and only if O ∩ Kn is open in Kn for every 
n ∈ N, where every Kn carries the topology inherited from (FP (X), τ). Clearly, τ ⊂ τ∗ and τ |Kn

= τ∗|Kn

for every n ∈ N. We shall show that (Fa(X), τ∗) is a paratopological group, i.e., the multiplication mapping

op2 : (Fa(X), τ∗) × (Fa(X), τ∗) → (Fa(X), τ∗)

is continuous. Indeed, suppose C is an arbitrary compact subset of (Fa(X), τ∗) × (Fa(X), τ∗). Then C ⊂
C1×C1, where C1 is some compact subset of (Fa(X), τ∗). Since (Fa(X), τ∗) is a kω-space, we have C1 ⊂ Kn0

for some n0, whence

op2(C) ⊂ op2(C1 × C1) ⊂ op2(Kn0 ×Kn0) ⊂ K2n0 .

Since (Fa(X), τ) is a paratopological group, we have that the mapping

op2|(C,τ×τ |C) : (C, τ × τ |C) → (K2n0 , τ |K2n0
)

is continuous. By virtue of the equalities

τ × τ |C = τ∗ × τ∗|C

and

τ |K2n0
= τ∗|K2n0

,

the mapping

op2|(C,τ∗×τ∗|C) : (C, τ∗ × τ∗|C) → (K2n0 , τ
∗|K2n0

)

is continuous. Since X is functionally Hausdorff, (FP (X), τ) is Hausdorff by [17, Proposition 3.8]. Thus 
(Fa(X), τ∗) × (Fa(X), τ∗) is Hausdorff kω-space. By [5, Theorem 3.3.21], the mapping

op2 : (Fa(X), τ∗) × (Fa(X), τ∗) → (Fa(X), τ∗)

is continuous.
Now, suppose A ⊂ Y and A ∈ τ∗|Y . Then there exists an open subset O of (Fa(X), τ∗) such that 

A = O ∩ Y , whence A ∩ Yn = O ∩ Y ∩ Yn = O ∩ Yn ∈ τ∗|Yn
= τ |Yn

by Yn ⊂ Kn for every n ∈ N. Hence 
A ∈ τ |Y and τ∗|Y = τ |Y , and so τ∗|X = τ |X . By Remark 1.4, the topology τ of FP (X) is the finest 
paratopological group topology on the group Fa(X) which induces the original topology on X, so τ∗ = τ . 
This completes the proof of the claim.

Clearly, Kn ⊂ FP (Xmn
, X) for every n ∈ N, so the space FP (X) is determined {FP (Xmn

, X) : n ∈ N}
by the above claim, equivalently, FP (X) is determined by {FP (Xn, X) : n ∈ N}. �
Remark 2.2. Lemma 2.1 improves [16, Theorem 2], one of the main results obtained by N. Pyrch in [16], 
which states that FP (X) is a kω-space if X is a functionally Hausdorff countable kω-space.

The following two lemmas can be easily checked.

Lemma 2.3. Suppose that both (G, τ1) and (G, τ2) are paratopological groups, Y ⊂ G and τ1|Y = τ2|Y . Then 
for every a ∈ G, τ1|aY = τ2|aY .
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Lemma 2.4. Let ϕ be a homomorphism of a group G onto a group H. If (G, τ) is a paratopological group, 
then (H, σ) is a paratopological group, where σ = {ϕ(V ) : V ∈ τ}.

We introduce the notion of a topological basis of free paratopological groups, which is very useful for 
discussing MP -equivalence of free paratopological groups.

A subspace Y of the free paratopological group FP (X) on a topological space X is called a topological 
basis of FP (X) if Y is a free algebraic basis1 of FP (X) and the finest paratopological group topology on the 
abstract group Fa(X) which induces on Y its original topology coincides with the topology of FP (X). The 
Abelian case can be defined analogously. Especially, by Remark 1.4, the subspace X of FP (X) (AP (X)) is 
a topological basis of FP (X) (AP (X)).

Lemma 2.5. If Y is a topological basis of the free paratopological group FP (X) on a topological space X, 
then X and Y are MP -equivalent. The same is valid for the Abelian case.

Proof. Let i : Y → FP (X) be the identity continuous mapping. We can extend the mapping i to a 
continuous homomorphism î : FP (Y ) → FP (X). Since Y is a free algebraic basis of FP (X), î : FP (Y ) →
FP (X) is an isomorphism. Let τ and T denote the original topologies of FP (Y ) and FP (X) respectively. 
We define a new topology σ = {̂i(U) : U ∈ τ} on the abstract group Fa(X). It follows from Lemma 2.4 that 
(Fa(X), σ) is a paratopological group. It is easy to see that ̂i : (FP (Y ), τ) → (Fa(X), σ) is a homeomorphism. 
Further, τ |Y = σ|Y , i.e., σ induces on Y its original topology. The space Y being a topological basis of 
FP (X), we have T ⊃ σ, whence ̂i : (FP (Y ), τ) → (FP (X), T ) is an open mapping. Hence, ̂i : (FP (Y ), τ) →
(FP (X), T ) is topologically isomorphic, i.e., X and Y are MP -equivalent. The arguments are valid for the 
Abelian case. �
Remark 2.6. Every topological basis Y of the free paratopological group FP (X) on a topological space X
is closed in FP (X). The same is valid for the Abelian case. Indeed, it follows from Lemma 2.5 that the 
continuous identity mapping i : Y → FP (X) can extend to a topological isomorphism ̂i : FP (Y ) → FP (X). 
By Remark 1.5, Y is closed in FP (Y ), whence î(Y ) = Y is closed in FP (X). The arguments are valid for 
the Abelian case.

Let X = {0} ∪N
2. NN denotes the set of all functions from N to N. For every n, m, k ∈ N, put W (n, m) =

{(n, k) : k ≥ m}. For every x ∈ N
2, let B(x) = {{x}}. Let

B(0) = {{0} ∪
⋃

n∈N

W (n, f(n)) : f ∈ N
N}.

The topological space X, generated by the neighbourhood system {B(x)}x∈X , is called countable fan space 
and denoted by Sω [1].

Theorem 2.7. Let {Ci : i ∈ N} be a countable family of pairwise disjoint convergence sequences Ci =
{xi} ∪ {xi,j : j ∈ N} homeomorphic to the subspace {0} ∪ { 1

n : n ∈ N} of the real line R, where {xi,j}j∈N

converges to xi. Then the topological sum X =
⊕

i∈N
Ci and the countable fan space Sω are MP -equivalent.

Proof. The space X is a metrizable countable kω-space with the kω-decomposition X = ∪{Dn : n ∈ N}, 
where Dn =

⋃
i≤n Ci for every n ∈ N. By Lemma 2.1, FP (X) is determined by {FP (Dn, X) : n ∈ N}. Put

1 Y is a free algebraic basis of FP (X) if Y generates Fa(X) algebraically and there are no algebraic relations in Fa(X) between 
elements of the set Y .
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Y = {xi : i ∈ N} ∪
⋃

i∈N

x1x
−1
i Ci.

Clearly, Y is also a free algebraic basis of FP (X) since X is a free algebraic basis of FP (X). We shall 
show that Y is a topological basis of FP (X). Let τ ′ be the finest paratopological group topology on 
the abstract group Fa(X) which induces on Y its original topology. Clearly, τ ′ is finer than the original 
topology τ of FP (X) and τ ′|Y = τ |Y . By Lemma 2.3, τ ′|Ci

= τ |Ci
for every i ∈ N. Since X =

⊕
i∈N

Ci, 
idX : (X, τ |X) → (X, τ ′|X) is continuous, which implies τ ′|X = τ |X . By Remark 1.4, τ ′ = τ , i.e., Y is a 
topological basis of FP (X). It follows from Lemma 2.5 that X and Y are MP -equivalent. It remains to 
verify that Y is homeomorphic to Sω.

For every i ∈ N, let Li = x1x
−1
i Ci. Put

Y0 =
⋃

i∈N

Li.

Since FP (X) is a paratopological group, Li converges to x1 for every i ∈ N. Clearly

Li ∩ Lj = {x1}

for any distinct i, j ∈ N. Since X is functionally Hausdorff, FP (X) is Hausdorff [17, Proposition 3.8]. Hence

Y0 ∩ FP (Dn, X) =
⋃

i≤n

Li

is compact and so closed in FP (X) for every n ∈ N. Then Y0 is closed in FP (X) because FP (X) is 
determined by {FP (Dn, X) : n ∈ N}. Also, it follows that the space Y0 is determined by {

⋃
i≤n Li : n ∈ N}. 

So the space Y0 is homeomorphic to Sω.
By Remark 1.5, (X \ {x1,j : j ∈ N}) ∩ Y = {xi : i ∈ N} is closed in Y . Obviously,

Y0 ∩ {xi : i ∈ N} = {x1}.

Since the subspace D = {xi : i ∈ N} of the space X is a discrete space, we have

Y = Y0 ⊕ {xi : i ≥ 2}.

Therefore, the space Y is homeomorphic to Sω. �
Remark 2.8. It is easy to verify that the space Sω is neither locally compact nor first-countable. Therefore, 
MP -equivalence does not preserve local compactness, first-countability or metrizability.

3. MP -invariance of free paratopological groups

In the section, we shall mainly investigate MP -invariance of pseudocompactness, hereditary Lindelöfness, 
hereditary separability and the property of being a cosmic space.

First of all, we shall show that MP -equivalent topological spaces are always AP -equivalent.

Lemma 3.1. [2, Proposition 1.5.12] Let G and H be paratopological groups, let p : G → H be a topological 
isomorphism. If G0 is an invariant subgroup of G and H0 = p(G0), then the quotient groups G/G0 and 
H/H0 are topologically isomorphic.
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Lemma 3.2. [2, Theorem 1.5.13] Let G and H be paratopological groups, p : G → H be an open continuous 
surjective homomorphism and N be the kernel of the homomorphism p. Then the mapping φ : G/N → H

which assigns to a coset xN the element p(x) is a topological isomorphism.

Theorem 3.3. MP -equivalent topological spaces X and Y are AP -equivalent.

Proof. Suppose there exists a topological isomorphism h : FP (X) → FP (Y ). Denote by KX and KY the 
derived subgroup2 of FP (X) and FP (Y ), respectively. Obviously h(KX) = KY . Thus, by Lemma 3.1, 
the quotient groups FP (X)/KX and FP (Y )/KY are topologically isomorphic. Now, in order to prove this 
theorem, it suffices to show the following claim.

Claim. AP (X) is topologically isomorphic to the quotient group FP (X)/KX .

Indeed, let idX : X → X be identity mapping, and then we extend the mapping idX to the continuous 
surjective homomorphism ϕ : FP (X) → AP (X). Clearly, the kernel of the homomorphism ϕ coincides with 
KX . We shall show that ϕ is an open mapping. According to Lemma 2.4, we define a new paratopological 
group topology

σ = {ϕ(U) : U is open in FP (X)}

on the set Aa(X). Since ϕ : FP (X) → AP (X) is continuous, σ is finer than the original topology τ of 
AP (X). Let U be an open subset of FP (X) and assume that x ∈ ϕ(U) ∩X. Pick z ∈ U such that ϕ(z) = x. 
Then W = X∩xz−1U is an open neighbourhood of x in X and W = ϕ(W ) ⊂ ϕ(U) ∩X. Hence, ϕ(U) ∩X is 
open in X, and so σ induces on X its original topology. Further, by Remark 1.4, σ = τ , and then ϕ is an open 
mapping. Thus the quotient group FP (X)/KX is topologically isomorphic to AP (X) by Lemma 3.2. �

However, we do not know the answer to the following question.

Question 3.4. Is it true that AP -equivalence does not imply MP -equivalence?

Next, we shall show that pseudocompactness is an AP -invariant property and, a fortiori, MP -invariant 
property.

The following lemma can be directly checked according to the definition of a topological basis.

Lemma 3.5. Let X and Y be topological spaces. If ϕ : FP (X) → FP (Y ) is a topological isomorphism, then 
ϕ−1(Y ) is a topological basis for FP (X). The same is valid for the Abelian case.

Recall that a completely regular space X is called pseudocompact [5] if every continuous real-valued 
function defined on X is bounded.

Theorem 3.6. Suppose two completely regular spaces X and Y are AP -equivalent, more generally, 
MP -equivalent. If Y is pseudocompact, then so is X.

Proof. Let ϕ : AP (X) → AP (Y ) be a topological isomorphism. Then ϕ−1(Y ) is a topological basis for 
AP (X) by Lemma 3.5. For the sake of brevity, without loss of generality, we assume that Y is a topological 
basis for AP (X). Suppose that X is not pseudocompact. Then it is easy to check that X contains a discrete 
family {Ui : i ∈ ω} of non-empty open subsets of X. For every i ∈ ω, pick a point xi ∈ Ui.

2 The derived subgroup G′ [18] of an abstract group G is the subgroup of G generated by all commutators x−1y−1xy, where 
x, y ∈ G. The derived subgroup G′ of G is an invariant subgroup of G.
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For g ∈ AP (X) and x ∈ X, denote by c(x, g) the coefficient k that stands at x in the normal form of 
g with respect to the free basis X. In other words, if g = kx + k1x1 + · · · + knxn, where x, x1, ..., xn are 
pairwise distinct elements of X and k, k1, ..., kn ∈ Z, then c(x, g) = k. In particular, c(x, g) = 0 if and only 
if x does not appear in the normal form of g.

Since Y is a free algebraic basis for AP (X), there exists yi ∈ Y such that c(xi, yi) �= 0 for every i ∈ ω. 
Let ti,1, ..., ti,ni

∈ X be all letters distinct from xi which appear in the normal form of yi (possibly, ni = 0). 
Without loss of generality, we can assume that c(xj , yi) = 0 whenever i < j.

By induction on n ∈ ω, we define continuous real-valued functions fn on X as follows. Put f0 ≡ 0. 
Suppose that for some n ≥ 1, we have defined the functions f0, ..., fn−1. Put gn =

∑n−1
i=0 fi. Let

Fn = (X \ Un) ∪ {ti,j : i ≤ n, j ≤ ni, ti,j ∈ Un}.

Clearly, Fn is closed in X, and xn /∈ Fn by c(xj , yi) = 0 whenever i < j. Since X is completely regular, 
there exists a continuous real-valued function fn on X such that fn(Fn) ⊂ {0} and

fn(xn) = n +
∑

j∈{j: tn,j∈U0∪···∪Un−1}
|c(tn,j , yn)gn(tn,j)|.

This completes our construction. Since {Ui : i ∈ ω} is discrete in X, the function f =
∑

n∈ω fn is continuous 
by [5, Corollary 2.1.12]. It is easy to check that the following hold.

(1) For every n ∈ ω, f(xn) = fn(xn).
(2) For every i ≥ 1 and j ≤ ni, f(ti,j) = 0 whenever ti,j /∈ U0 ∪ · · · ∪ Ui−1.
(3) For every i ≥ 1 and j ≤ ni, f(ti,j) = gi(ti,j) whenever ti,j ∈ U0 ∪ · · · ∪ Ui−1.
Now, we extend f to a continuous homomorphism ψ : AP (X) → R. For every i ≥ 1, since

yi = c(xi, yi)xi + c(ti,1, yi)ti,1 + · · · + c(ti,ni
, yi)ti,ni

,

we have

|ψ(yi)| = |c(xi, yi)f(xi) + c(ti,1, yi)f(ti,1) + · · · + c(ti,ni
, yi)f(ti,ni

)|

= |c(xi, yi)(i +
∑

j∈{j: ti,j∈U0∪···∪Ui−1}
|ri,j |) +

∑

j∈{j: ti,j∈U0∪···∪Ui−1}
ri,j |

≥ i,

where

ri,j = c(ti,j , yi)gi(ti,j).

Because {yi : i ≥ 1} ⊂ Y , the space Y is not pseudocompact. This is a contradiction. �
The following questions arise naturally from our investigations.

Question 3.7. Suppose two completely regular spaces X and Y are AP -equivalent or MP -equivalent. Is Y
compact if X is compact?

Question 3.8. Suppose two completely regular spaces X and Y are AP -equivalent or MP -equivalent. Is Y
countably compact if X is countably compact?

However, we shall prove that another covering property, hereditary Lindelöfness, is MP -invariant. Indeed, 
we can obtain a more general theorem.
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Lemma 3.9. [10, Proposition 6.3] Let X be a topological space and in denote the continuous multiplication 
mapping of X̃n onto FPn(X) for every n ∈ N, where X̃ = X⊕{e} ⊕X−1. Put Cn(X) = FPn(X) \FPn−1(X)
and C∗

n(X) = i−1
n (Cn(X)) for n ≥ 1. Then the mapping in homeomorphically maps C∗

n(X) onto Cn(X) for 
every n ∈ N.

The following fact about general topology is evident.

Lemma 3.10. Let both f : X1 → Y1 and g : Y2 → X2 be continuous mappings between topological spaces, 
where X1 ⊂ X2 and Y1 ⊂ Y2. If F = {x ∈ X1 : g(f(x)) = x} �= ∅, then f |F : F → f(F ) is a homeomorphism.

Lemma 3.11. If X and Y are MP -equivalent topological spaces, then Y can be represented as the union of 
countably many subspaces each of which is homeomorphic to a subspace of X.

Proof. Let ϕ : FP (X) → FP (Y ) be a topological isomorphism. Then ϕ−1(Y ) is a topological basis for 
FP (X) by Lemma 3.5. For the sake of brevity, without loss of generality, we assume that Y is a topological 
basis for FP (X). For g ∈ FP (X), denote by lY (g) the reduced length of g with the respect to the free 
algebraic basis Y . For n ∈ N and ν = (m1, ..., mn) ∈ N

n, put

Cn(Y ) = {g ∈ FP (X) : lY (g) = n},

and

Yν = Y ∩ Cn(X) ∩ ((X̃ ∩ Cm1(Y )) · · · (X̃ ∩ Cmn
(Y ))),

where X̃ = X⊕{e} ⊕X−1 and Cn(X) = FPn(X) \FPn−1(X). Clearly, Y =
⋃

ν∈Ξ Yν , where Ξ =
⋃

n∈N
N

n.
Let n ∈ N and ν = (m1, ..., mn) ∈ N

n be arbitrary. For every i = 1, ..., n, denote by ϕi the mapping 
from Yν to X assigning to g ∈ Yν the point of X that appears at the i-th place in the reduced form of g
with respect to the free algebraic basis X. Analogously, for every j = 1, ..., mi, denote by ψi,j the mapping 
from Cmi

(Y ) to Y assigning to an element h ∈ Cmi
(Y ) the point of Y that appears at the j-th place in the 

reduced form of h with respect to the free algebraic basis Y . By Lemma 3.9, the mappings ϕi and ψi,j are 
continuous. Let

F ν
i,j = {w ∈ Yν : ψi,j(ϕi(w)) = w}.

Then Lemma 3.10 implies that every F ν
i,j is homeomorphic to a subspace of X. It remains to verify that

Y = ∪{F ν
i,j : ν = (m1, ...,mn) ∈ N

n, n ∈ N, i = 1, ..., n, j = 1, ...,mi}.

Indeed, suppose that y ∈ Yν , where ν = (m1, ..., mn) ∈ N
n. Then we can write

y = xε1
1 · · ·xεn

n ,

and for every i = 1, ..., n,

xi = y
δi,1
i,1 · · · yδi,mi

i,mi
,

where xi ∈ X, εi = ±1, yi,j ∈ Y and δi,j = ±1. Thus

y = (yδ1,11,1 · · · yδ1,m1
1,m )ε1 · · · (yδn,1

n,1 · · · yδn,mn
n,mn )εn .
1
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Since Y is a free algebraic basis for FP (X), there exist some i and j such that y = yi,j . This implies that

ψi,j(ϕi(y)) = ψi,j(xi) = yi,j = y,

and so y ∈ F ν
i,j . This completes the proof. �

A topological property P is said to countably additive if every space X, which can be expressed as the 
union of a countable family of its subspaces Xn with the property P, has also P. Lemma 3.11 immediately 
implies the following theorem.

Theorem 3.12. Assume that P is a hereditary, countably additive topological property. Let X and Y be 
MP -equivalent topological spaces. If X has the property P, then so does Y . Namely, P is MP -invariant.

A topological space X is called a cosmic space [14] if X has a countable network. Theorem 3.12 leads to 
the following corollary.

Corollary 3.13. Let X and Y be MP -equivalent topological spaces. Then the following hold.
(1) If X is hereditarily Lindelöf, then so is Y .
(2) If X is hereditarily separable, then so is Y .
(3) If X is a cosmic space, then so is Y .

Question 3.14. Is valid Corollary 3.13 for the AP -equivalent case?

Question 3.15. Is Lindelöfness MP -invariant or AP -invariant?

Question 3.16. Is separability MP -invariant or AP -invariant?
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