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1. Introduction

The symbols F (X) and A(X) denote respectively the free topological group and the free Abelian topological 
group on a Tychonoff space X in the sense of Markov [21]. The topology of F (X) is rather complicated even 
for a very simple space X. Indeed, only when X is discrete can the space F (X) have the Baire property or 
the Fréchet–Urysohn property [2]. Neither F (Q) nor A(Q) are k-spaces [7], where Q stands for all rational 
numbers. The following is a famous theorem obtained by J. Mack, S.A. Morris and E.T. Ordman.

Theorem 1.1 ([20]). A space X is a kω-space if and only if the space F (X) (or A(X)) is a kω-space.

Thus the following question was considered by several topologists [2,3,11,12,27,28].

Question 1.2 ([2]). When, in terms of the space X, is the space F (X) (or A(X)) a k-space or of countable 
tightness?

Arhangel’skǐı, Okunev and Pestov [2] gave the characterizations of the countable tightness or k-space 
property of F (X) on a metrizable space X as follows.

Theorem 1.3 ([2, Theorem 3.6]). The tightness of F (X) is countable if and only if X is either separable or 
discrete for a metrizable space X.

Theorem 1.4 ([2, Theorem 3.7]). The following are equivalent for a metrizable space X:

(1) F (X) is a k-space;
(2) F (X) is a kω-space;
(3) X is locally compact separable or discrete.

Recently, Z. Li, F. Lin and C. Liu [11] attempted to extend Theorems 1.3 and 1.4 to some generalized 
metrizable spaces. For example,

Theorem 1.5 ([11, Proposition 4.4]). The tightness of F (X) is countable if and only if X is separable or 
discrete for a stratifiable k-space X.

Theorem 1.6 ([11, Theorem 4.11]). F (X) is a k-space if and only if X is a kω-space or discrete for a 
k∗-metrizable μ-space X.

In this paper, we characterize some generalized metrizable spaces X such that F (X) is of countable 
tightness or a k-space. The paper is organized as follows. Section 2 introduces terminology and notation 
used throughout the paper. In Section 3, some basic facts are established, which play an important role in 
the main body of the article. The countability of tightness in F (X) are studied in Section 4. We mainly 
shows that: F (X) is of countable tightness if and only if X is separable or discrete for a paracompact σ-, 
k-space (see Theorem 4.1). Further, F (X) is of countable tightness if and only if X is an ℵ0-space or discrete 
for a normal k∗-metrizable k-space X (see Theorem 4.3). In Section 5, we characterize some generalized 
metrizable spaces X such that F (X) is a k-space. It is shown that: F (X) is a k-space if and only if X is locally 
compact separable metrizable or discrete for a first-countable paracompact σ-space X (see Theorem 5.2), 
and F (X) is a k-space if and only if X is locally kω separable or discrete for a k∗-metrizable space X (see 
Theorem 5.3).

Let A be a space and B ⊆ A. In this paper, the notation A/B stands for a quotient space of A after 
shrinking B to a single point. The normality of a space is needed to assume this space to be completely 
regular.
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2. Notation and terminology

Recall that a space X is of countable tightness if whenever A ⊆ X and x ∈ A, there exists a countable 
set B ⊆ A such that x ∈ B. A space X is a k-space provided that a subset C ⊆ X is closed in X if C ∩K is 
closed in K for each compact subset K of X. A space X is a sequential space if for any non-closed set A of 
X there is a sequence in A such that this sequence converges to some point in X \A. A space X is called a 
kω-space if X =

⋃
i∈ω Xi, where each Xi is compact, and each set E ⊆ X such that every E ∩Xi closed in 

Xi is closed in X. It is known that [23]

(1) every first-countable space is a sequential space;
(2) every sequential space is of countable tightness and a k-space;
(3) every k-space with compact subsets metrizable is a sequential space;
(4) every hereditarily separable space is of countable tightness;
(5) every Lindelöf locally kω-space is a kω-space;
(6) every kω-space is a σ-compact, k-space.

Definition 2.1. Let P be a cover of a space X.

• The family P is a network of X [1] if for each U open in X and x ∈ U there is a P ∈ P such that 
x ∈ P ⊆ U ;

• P is called a k-network of X [24] if for each U open in X and each compact set K ⊆ U , there is a finite 
subfamily P ′ ⊆ P such that K ⊆

⋃
P ′ ⊆ U .

A regular space X is called a σ-space (resp. an ℵ-space [24]) if it has a σ-locally finite network (resp. a 
σ-locally finite k-network). A regular space X with a countable network (resp. a countable k-network) is 
called a cosmic space (resp. an ℵ0-space [22]). Every compact subset of σ-spaces is metrizable [9]. Every 
cosmic space is hereditarily separable and hereditarily Lindelöf.

We shall concern ourselves with two classes of generalized metrizable spaces: k∗-metrizable spaces and 
k-semistratifiable spaces. k∗-Metrizable spaces [4] are defined by certain images of metric spaces, which can 
be characterized as regular spaces with a σ-compact-finite k-network (see [4, Theorem 6.4]), in which a family 
P of subsets of a space X is compact-finite if every compact subset of X meets at most finitely many P ∈ P. 
A regular space X is said to be a k-semistratifiable space [19], if there is an operator U assigning to each 
closed set F , a sequence of open sets U(F ) = {U(n, F )}n∈N such that (1)

⋂
n∈N

U(n, F ) = F ; (2) if D ⊆ F , 
then U(n, D) ⊆ U(n, F ) for each n ∈ N; (3) if K is compact in X and K ∩ F = ∅, then K ∩ U(m, F ) = ∅

for some m ∈ N. If we replace the above condition (1) and (3) by (1′) 
⋂

n∈N
U(n, F ) =

⋂
n∈N

U(n, F ) = F , 
then X is said to be a stratifiable space [5].

A space X is called a Lašnev space if X is a closed image of a metric space. Lašnev spaces can be 
characterized as a regular Fréchet space with a σ-compact-finite k-network [16], where a space X is called 
a Fréchet space if, for any A ⊆ X and x ∈ A, there is a sequence S ⊆ A converging to x.

We summarize some relations of above generalized metric spaces as follows [4,9,14].

metrizable spaces
�

���
�

���

ℵ0-spaces
�

���

�

Lašnev spaces

�

�
���

ℵ-spaces

�

�
���

k∗-metrizable spaces cosmic spaces

�
stratifiable spaces � k-semistratifiable spaces � σ-spaces
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The free topological group F (X) admits the following description: there is a canonical mapping: i : X →
F (X), and for any continuous mapping f of X to a topological group G there exists a unique continuous 
homomorphism h : F (X) → G such that f = h ◦ i. It is known that X is a Tychonoff space if and only if the 
canonical mapping i is a closed embedded mapping into F (X). Therefore, the topology of the group F (X)
over a Tychonoff space can be defined as the strongest group topology that induces the original topology 
on X. Regarded as a group without a topology, F (X) is the free group of the set X. Abelian topological 
group A(X) is defined similarly. Given a subset Y of a Tychonoff space X, we use F (Y, X) to denote the 
subgroup of F (X) generated by Y , while A(Y, X) stands for the corresponding subgroup of A(X). It is well 
known that if Y is closed in a Tychonoff space X, then F (Y, X) and A(Y, X) are closed in F (X) and A(X), 
respectively.

For a space X, we always denote the set of all isolated points of X by I(X) and NI(X) = X \ I(X)
in this paper. We denote by N the set of all natural numbers. Readers may refer [3,6,9] for notations and 
terminology not explicitly given here. In what follows, all spaces are assumed to be Tychonoff, which means 
that all spaces are completely regular and Hausdorff.

3. Some basic facts

In this section, we shall establish some basic facts, which play an important role in Sections 4 and 5.
Recall that a space X is ω1-compact if every closed discrete subset of X is countable. A space (X, T ), 

where T is the topology of X, is submetrizable if, there is a metrizable topology T ′ on X such that T ′ ⊆ T . 
Every cosmic space is submetrizable [5].

Proposition 3.1. Let X be a sequential space such that NI(X) is ω1-compact and submetrizable. If F (X)
is either of countable tightness or a k-space, then X is ω1-compact or discrete.

Proof. Suppose that the space X is neither ω1-compact nor discrete. Then there is an uncountable discrete 
closed subset D in X. Since NI(X) is ω1-compact and closed in X, we can assume that D ⊆ I(X).

Case 1. I(X) is not closed in X.
From the fact that X is a sequential space, it follows that there is a non-trivial sequence S ⊆ I(X)

converging to some point x ∈ X \ I(X). Without loss of generality, we can assume that S ∩ D = ∅. Put 
F = X \ (D∪S) and Z = X/F . Observing that every point in S∪D is an isolated point in X and D is both 
closed and open in X, one can easily check that the space Z is homeomorphic to D⊕S. Then F (Z) is neither 
of countable tightness nor a k-space [2, Proposition 3.2]. One the other hand, let p : X → Z be the natural 
quotient mapping, where Z is metrizable. The homomorphism p̃ : F (X) → F (Z) extending the quotient 
mapping p is open by [3, Corollary 7.1.9]. Since the countable tightness and k-property are preserved by 
quotient mappings [23], F (Z) is of either countable tightness or a k-space, which is a contradiction.

Case 2. I(X) is closed in X.
Since NI(X) is submetrizable, that is, there is a one-to-one continuous mapping f from NI(X) onto a 

metrizable space M . Define f̃ : X → Z = M ⊕ I(X) as follows: f̃(x) = f(x) when x ∈ NI(X), otherwise, 
f̃(x) = x. Note that I(X) is closed and open in X, so f̃(x) is continuous. Observing that X is a non-discrete 
sequential space and NI(X) is closed and open, the subspace NI(X) is both non-discrete and sequential, 
and therefore, there is a non-trivial sequence S converging to some point x in NI(X). Clearly, the sequence 
f̃(S) converges to f̃(x) in Z and f̃(D) is an uncountable closed and discrete subset in Z. One can easily 
show that S ∪D, f̃(S) ∪ f̃(D) and S ⊕D are homeomorphic.

The homomorphism F (f̃) : F (X) → F (Z) extending the continuous mapping f̃ is continuous by [3, 
Corollary 7.1.9]. Observing that the mapping f̃ is both one-to-one and continuous, the mapping F (f̃) is 
both one-to-one and continuous as well, so is the mapping F (f̃)|F (S∪D,X) : F (S∪D, X) → F (f̃(S) ∪f̃(D), Z).
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Next, we shall show that F (f̃)|F (S∪D,X) is homeomorphism. Since Z is metrizable, according to [26, 
Theorem 1] the free topological group F (f̃(S) ⊕ f̃(D)) is topologically isomorphic to F (f̃(S) ∪ f̃(D), Z), 
i.e, F (f̃(S) ⊕ f̃(D)) ∼= F (f̃(S) ∪ f̃(D), Z). Thus, from the fact that the topology of the group F (T ) is the 
finest topological group topology on Fa(T ) that generates on T its original topology [3, Corollary 7.1.8] it 
follows that

F (S ∪D,X) ∼= F (f̃(S) ⊕ f̃(D)) ∼= F (f̃(S) ∪ f̃(D), Z).

Since S ∪D is closed in X, the set F (S ∪D, X) is closed in F (X) by [3, Theorem 7.4.5]. Hence, we have 
proved that there is a closed copy of F (f̃(S) ⊕ f̃(D)) in F (X). Thus, F (X) is neither of countable tightness 
nor a k-space because F (f̃(S) ⊕ f̃(D)) is neither of countable tightness nor a k-space [2, Proposition 3.2]. 
This is a contradiction.

Hence, X is ω1-compact or discrete. �
A family P of subsets of a space X is cs-finite if every convergent sequence of X meets at most finitely 

many P ∈ P.

Lemma 3.2. Let P be a cs-finite family of subsets in a sequential space X. Then the set 
⋃
{sP : P ∈ P} is 

closed in X, where sP is a finite subset of P ; moreover, P is countable if X is ω1-compact.

Proof. Choose a finite set sP ⊆ P for each P ∈ P. Without loss of generality, we can assume that 
A =

⋃
{sP : P ∈ P} is infinite. If the subset A is not closed in X, there is a non-trivial sequence S in 

A converging to x ∈ X \ A. It is obvious that the family {P ∈ P : P ∩ S �= ∅} is infinite, and P is not 
cs-finite. This is a contradiction.

If P is uncountable, there is an uncountable set A = {xα : α < ω1} in X and an uncountable subfamily 
{Pα ∈ P : α < ω1} such that xα ∈ Pα for each α < ω1. Then A is closed discrete in X, and X is not 
ω1-compact. �

Recall that the space Sω1 is the quotient space obtained by identifying all the limit points of the topological 
sum of ω1 many nontrivial convergent sequences.

Lemma 3.3. If F (X) is either of countable tightness or a k-space, then every quotient Y of X, where Y is 
Tychonoff, contains no closed copy of Sω1.

Proof. Let p : X → Y be a quotient mapping, where Y is also Tychonoff. The homomorphism F (p) :
F (X) → F (Y ) extending the quotient mapping p is open by [3, Corollary 7.1.9]. Since the countable tightness 
and k-space property are preserved by quotient mappings [23], F (Y ) is either of countable tightness or a 
k-space. Observe that the space Sω1 × Sω1 is neither of countable tightness nor a k-space [8] and that the 
free topological group F (Y ) contains a closed copy of Y × Y [3, Theorem 7.1.13], Y has no closed copy 
of Sω1 . �

A space X is collectionwise Hausdorff if, for any discrete set {xα : α ∈ Γ} ⊆ X, there is a pairwise 
disjoint family {Uα : α ∈ Γ} of open sets in X such that xα ∈ Uα for each α ∈ Γ .

Proposition 3.4. Let X be a sequential space. If F (X) is either of countable tightness or a k-space, then X
is cosmic or discrete if and only if X is a normal collectionwise Hausdorff space with a σ-cs-finite network.

Proof. Obviously, every cosmic space or every discrete space is a normal collectionwise Hausdorff space with 
a σ-cs-finite network.
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Conversely, suppose that X is a normal collectionwise Hausdorff space with a σ-cs-finite network. It is 
enough to show that X is ω1-compact or discrete by Lemma 3.2.

Firstly, we show that the subspace NI(X) is ω1-compact. If not, choose a closed uncountable discrete 
subset D = {xα : α < ω1} in NI(X). Observing that X is normal collectionwise Hausdorff, it is easy to check 
there is a discrete collection {Uα : α < ω1} of open sets in X such that xα ∈ Uα for each α < ω1. Since X is 
sequential and D ⊆ NI(X) is a closed discrete subset, we can find a non-trivial sequence {xα(n)} ⊆ Uα \D
converging to xα for each α < ω1. Put Y = X/D. Then the quotient mapping p : X → Y is closed and Y is 
normal. Let E = {xα(n) : n < ω, α < ω1} ∪D. One can easily check that p(E) is a closed copy of Sω1 in Y . 
This is a contradiction with Lemma 3.3, thus NI(X) is ω1-compact.

It is obvious that NI(X) as a closed subspace of X is a sequential space with a σ-cs-finite network, so that 
from Lemma 3.2 it follows that NI(X) has a countable network, and therefore, NI(X) is submetrizable. 
Hence, the statement directly follows from Proposition 3.1. �

A family P of subsets of a space X is called a wcs∗-network of X [15] if whenever a sequence {xn}
converges to x ∈ U , where U is open in X, there is a P ∈ P and a subsequence {xni

} of {xn} such that 
{xni

: i ∈ N} ⊆ P ⊆ U . Obviously, k-networks are wcs∗-networks, and wcs∗-networks are networks in a 
space. If we strengthen the network to a wcs∗-network in Proposition 3.4, then the collectionwise Hausdorff 
property can be dropped as follows.

Proposition 3.5. Let X be a sequential space. If F (X) is either of countable tightness or a k-space, then X
is an ℵ0-space or discrete if and only if X is a normal space with a σ-cs-finite wcs∗-network.

Proof. It is enough to prove the sufficiency. Let X be a normal space with a σ-cs-finite wcs∗-network. It 
is known that a Hausdorff space Y with a countable wcs∗-network has a countable k-network [10], we only 
need to show that NI(X) is ω1-compact by Lemma 3.2 and the proof of Proposition 3.4.

Suppose that NI(X) is non-ω1-compact. Choose a closed discrete uncountable subset D = {xα : α < ω1}
in NI(X). Then for each α < ω1, choose an open set Vα such that xα ∈ Vα ⊆ Vα ⊆ X \{xβ : β < ω1, β �= α}. 
Observing that X is a sequential space, one can find a non-trivial sequence {xα(n)} ⊆ Vα of X converging to 
xα. Let P =

⋃
n∈ω Pn be a σ-cs-finite wcs∗-network of X, where each Pn is cs-finite. There is a Pα ∈ P

and a subsequence {xα(ni)} of {xα(n)} such that {xα(ni)} ⊆ Pα ⊆ Vα.
Without loss of generality, we may assume the collection {Pα : α < ω1} ⊆ Pm for some m ∈ ω. Since 

Pm is cs-finite, we may further assume that {xα(ni) : i ∈ ω} ∩ {xβ(ni) : i ∈ ω} = ∅ whenever α �= β. Put 
E = {xα(ni) : i ∈ ω, α < ω1} ∪D and Y = X/D. Then the quotient mapping p : X → Y is closed and Y is 
normal. Applying Lemma 3.2 one can easily check that p(E) is a copy of Sω1 . To show p(E) is closed in Y , 
it is enough to show that E is closed in X. If not, there is a non-trivial sequence l ⊆ E \D converging to 
some point y ∈ X \ E. Noting that y /∈ D, the set l ∩ {xα(ni) : i < ω} is finite for each α < ω1. Hence, 
{P ∈ Pm : l ∩P �= ∅} is infinite, a contradiction because Pm is cs-finite. Therefore, E is closed in X, and 
p(E) is a closed copy of Sω1 in Y . It is a contradiction with Lemma 3.3. �
Remark 3.6. In view of the proof of Proposition 3.5, the quotient space Y is Tychonoff if X is normal. It 
will be shown in Theorem 5.3 that the normality of X can be omitted when F (X) is a k-space. We don’t 
known whether Proposition 3.5 is true if drop the normality of X when F (X) is of countable tightness.

4. The countable tightness of free topological groups

In this section, we shall discuss the countability of tightness of free topological groups on some gener-
alized metric spaces. Some characterizations are given. The first main result is as follows, which improves 
Theorems 1.3 and 1.5.
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Theorem 4.1. Let X be a paracompact σ-, k-space. Then the following statements are equivalent:

(1) F (X) is of countable tightness;
(2) X is cosmic or discrete;
(3) X is separable or discrete.

Proof. (1) ⇒ (3). Suppose that X is a paracompact σ-, k-space. Then X is a normal collectionwise Hausdorff 
sequential space with a σ-locally finite network. Thus the implication immediately follows from Proposi-
tion 3.4.

The implication (3) ⇒ (2) being obvious, we pass to the proof that (2) ⇒ (1). If X is cosmic or discrete, 
then so is F (X) [3, Corollary 7.1.17], and hence, the tightness of F (X) is countable. �

Every normal k-semistratifiable k-space is paracompact [13, Theorem 2].

Corollary 4.2. Let X be a normal k-semistratifiable k-space. Then the following statements are equivalent:

(1) F (X) is of countable tightness;
(2) X is cosmic or discrete;
(3) X is separable or discrete.

Next, we shall consider the countability of tightness in free topological groups on k∗-metrizable spaces.
Recently, Z. Li et al. [11, Theorem 4.2] proved that: Let X be a k∗-metrizable k-space. If I(X) = ∅, 

then F (X) is of countable tightness if and only if X is an ℵ0-space. However, we find that Z. Li et al didn’t 
consider the separation axiom of the quotient space Y in the proof of [11, Lemma 4.1, p. 192, line 20]. Thus 
its proof seems to have a gap.

Since every k∗-metrizable k-space is sequential [4, Theorem 3.5], we have the following results by Theo-
rem 4.1 and Proposition 3.5.

Theorem 4.3. Let X be a normal k∗-metrizable k-space. Then F (X) is of countable tightness if and only if 
X is an ℵ0-space or discrete.

Corollary 4.4. Let X be a Lašnev space. Then the following statements are equivalent:

(1) F (X) is of countable tightness;
(2) X is an ℵ0-space or discrete;
(3) X is separable or discrete.

Proof. Since every Lašnev space is a paracompact k∗-metrizable k-space [16], it is enough to show that 
(3) ⇒ (2) by Theorem 4.3. Suppose that X is a separable Lašnev space. Then X is a Fréchet Lindelöf 
space with a σ-compact-finite k-network, thus X has a countable k-network by Lemma 3.2, i.e., X is an 
ℵ0-space. �

Assuming the continuum hypothesis (CH) every separable k∗-metrizable k-space is an ℵ0-space by [17, 
Theorem 7].

Corollary 4.5 (CH). Let X be a normal k∗-metrizable k-space. Then F (X) is of countable tightness if and 
only if X is separable or discrete.

In view of Remark 3.6, we have the following a question.
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Question 4.6. Can the conditions normality in Corollary 4.2 and Theorem 4.3 be dropped?

5. k-Property in free topological groups

In this section, we mainly consider the k-space property of free topological groups on σ-spaces and 
k∗-metrizable spaces.

Lemma 5.1 ([3, Exercises 7.6.f]). If X is a first-countable space and A(X) is a k-space, then X is locally 
pseudocompact.

The following result improves Theorem 1.4.

Theorem 5.2. Let X be a first-countable paracompact σ-space. Then the following conditions are equivalent:

(1) F (X) is a k-space;
(2) F (X) is a kω-space or discrete;
(3) X is locally compact separable metrizable or discrete.

Proof. The implication (2) ⇒ (1) is obvious.
(1) ⇒ (3). Without loss of generality we can assume that X is non-discrete. Observe that F (X) is a 

k-space, so is A(X) because A(X) is a continuous open image of F (X) [3, Theorem 7.1.11], and, therefore, 
X is locally pseudocompact by Lemma 5.1. By Proposition 3.4 we obtain that X is cosmic. Then X is 
locally compact, and therefore X is also a separable metrizable space [22].

(3) ⇒ (2). It is well known that every a locally compact separable metrizable space is a kω-space, so the 
implication (3) ⇒ (2) follows from Theorem 1.1. �

Theorem 1.6 was showed by [11, Lemma 4.1], and the quotient space Y (see [11, Lemma 4.1, p. 192, 
line 20]) may not be Tychonoff, so the proof of Theorem 1.6 seems to have a gap. The following Theorem 5.3
is a better result.

Let P be a family of subsets of a space X. P is compact-countable if every compact subset of X meets 
at most countably many P ∈ P. P is star-countable if every P ∈ P meets at most countably many other 
Q ∈ P.

Theorem 5.3. Let X be a k∗-metrizable space. Then the following conditions are equivalent:

(1) F (X) is a k-space;
(2) F (X) is a kω-space or is discrete;
(3) X is a kω-space or discrete;
(4) X is locally kω separable or discrete.

Proof. It is enough to show the implications (1) ⇒ (4) ⇒ (3).
(1) ⇒ (4). Suppose that F (X) is a k-space.
Since X is a k∗-metrizable space, X has a compact-countable k-network. In addition, X2 is a k-space, so 

that X is either first-countable or locally kω by [18, Theorem 3.4].
Case 1. X is first-countable.
Since X is k∗-metrizable, X is metrizable by [16, Corollary 1]. Then X is locally compact separable or 

discrete by Theorem 5.2.
Case 2. X is locally kω.
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Since X has a σ-compact-finite k-network, X has a compact-countable k-network P such that the set 
P is σ-compact for each P ∈ P. Hence, P is a star-countable k-network of X, and X is a paracompact 
σ-space by [25, Corollary 2.4]. By Proposition 3.5, X is separable or discrete.

(4) ⇒ (3). Suppose that X is locally kω and separable. By the case 2, X is paracompact, thus X is 
Lindelöf and locally kω, hence X is a kω-space. �

However, we have the following a question.

Question 5.4. Does Theorem 5.3 hold for normal k-semistratifiable spaces?
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