
Topology and its Applications 180 (2015) 167–180
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The extensions of some convergence phenomena in topological 
groups ✩

Shou Lin a,b,∗, Fucai Lin a, Li-Hong Xie c

a School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, PR China
b Institute of Mathematics, Ningde Normal University, Ningde 352100, PR China
c School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 October 2012
Received in revised form 20 
November 2014
Accepted 26 November 2014
Available online xxxx

MSC:
54H11
22A05
54A20
54E45
54D55
54E20
54D05

Keywords:
Topological group
Quotient group
Three space property
Extension of a group
Sequentially compact
Sequential
Fréchet
First-countable
Second-countable
Metrizable
cs-Network
k-Network
Locally compact
Sequentially connected

In this paper sequentially compact sets, weakly first-countable sets and generalized 
metric sets in extensions of topological groups are studied. Some three space 
properties on convergence phenomena are obtained. It is shown that (1) if H is a 
closed subgroup of a topological group G such that all sequentially compact subsets 
of both the group H and the quotient space G/H are sequential, then all sequentially 
compact subsets of G are sequential; (2) let H be a closed and second-countable 
subgroup of a topological group G, then G is a topological sum of ℵ0-subspaces if 
the quotient space G/H is a local ℵ0-space; (3) let H be a locally compact and 
metrizable subgroup of a topological group G, then G is sequential if the quotient 
space G/H is sequential.

© 2014 Elsevier B.V. All rights reserved.

✩ The project is supported by the NSFC (Nos. 11171162, 11201414, 11471153).
* Corresponding author at: Institute of Mathematics, Ningde Normal University, Ningde 352100, PR China.

E-mail addresses: shoulin60@163.com, shoulin60@aliyun.com (S. Lin), linfucai2008@aliyun.com (F. Lin), 
yunli198282@126.com, xielihong2011@aliyun.com (L.-H. Xie).
http://dx.doi.org/10.1016/j.topol.2014.11.013
0166-8641/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.topol.2014.11.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:shoulin60@163.com
mailto:shoulin60@aliyun.com
mailto:linfucai2008@aliyun.com
mailto:yunli198282@126.com
mailto:xielihong2011@aliyun.com
http://dx.doi.org/10.1016/j.topol.2014.11.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2014.11.013&domain=pdf


168 S. Lin et al. / Topology and its Applications 180 (2015) 167–180
1. Introduction

One of the main operations on topological groups is that of taking quotient groups. Many non-trivial 
examples and counterexamples arise as quotients of relatively simple and well-known topological groups. 
This operation has been the subject of an intensive and thorough study; but there still exists a wealth of 
interesting open problems related to the behavior of different topological and algebraic properties under 
taking quotients [2].

The following general question is considered in [1]. Let H be a closed subgroup of a topological group G, 
and G/H the quotient space. Suppose that both H and G/H belong to some nice class of topological spaces. 
When can we conclude that G is in the same class? The group G is called an extension of the group H by 
the quotient space G/H [27].

In 1949, J.P. Serre [21] proved that if H is a closed subgroup of a topological group G, and both the spaces 
H and G/H are locally compact, then the topological group G is locally compact. This classical result on 
the extension of properties from G/H to G induces a study of the above general question. Suppose that H
is a closed subgroup of a topological group G, and G/H is the corresponding quotient space. A (topological, 
algebraic, or a mixed nature) property P is said to be a three space property [5] if, for every topological 
group G and a closed subgroup H of G, the fact that both spaces H and G/H have P implies that G also 
has P. The Serre’s theorem implies that local compactness is a three space property. In fact, compactness, 
completeness, pseudocompactness, connectedness and metrizability are three space properties in the class 
of topological groups, but countable compactness is not [4].

Recently, A.V. Arhangel’skǐı, M. Bruguera, M.G. Tkachenko and V.V. Uspenskij [2–5,25] discovered a 
series of results on the extensions of topological groups with respect to closed invariant subgroups, locally 
compact subgroups or locally compact metrizable subgroups. These results show that finding three space 
properties is one of interesting questions in topological groups. Some problems are still open in this direction.

Question 1.1 ([2, Open problem 1.5.1]). Characterize (or find the typical properties) of compact spaces that 
can be represented as quotients of topological groups with respect to closed metrizable subgroups.

Question 1.2 ([2, Open problem 9.10.1]). Suppose that H is a closed invariant subgroup of a topological 
group G, and all compact subsets of the groups H and G/H are sequentially compact. Does G have the 
same property?

Question 1.3 ([2, Open problem 9.10.3]). Let all compact subsets of the groups H and G/H be Fréchet–
Urysohn. Does the same hold for compact subsets of G?

Convergence is a basic research object in general topology. It is natural and quite plausible to expect 
that certain convergence properties of topological spaces should become stronger in topological groups [22]. 
The most obvious example of this phenomena is that first-countability becomes equivalent to metrizability 
in topological groups [2]. Some convergence properties in topological groups were introduced in [2]. In this 
paper we consider the extensions of some convergence properties in topological groups. In Section 2 the three 
space question for sequentially compact sets is discussed related to Question 1.2. It is shown that if H is a 
closed subgroup of a topological group G such that all compact subsets of the group H are first-countable, 
then all compact subsets of G are Fréchet if so is G/H, which gives a partial answer to Question 1.3. In 
Section 3 the quotients with respect to second-countable subgroups of topological groups are considered. It 
is proved that if H is a closed second-countable subgroup of a topological group G, then G is a topological 
sum of ℵ0-subspaces if G/H is a local ℵ0-space. In Section 4 the quotients with respect to locally compact 
subgroups of topological groups are studied. It is shown that a topological group G is a sequential space if 
H a locally compact metrizable subgroup of G and the quotient space G/H is sequential.
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All spaces in this paper satisfy the T2-separation axiom. All mappings are continuous and onto. If H is a 
closed subgroup of a topological group G, we denote by G/H the set of all left cosets aH of H in G, and endow 
it with the quotient topology with respect to the canonical mapping π : G → G/H defined by π(a) = aH, 
for each a ∈ G. Then the mapping π is open, and G/H is a homogeneous space [2, Theorem 1.5.1]. If 
H is a closed invariant subgroup of a topological group G, then G/H with the quotient topology and 
multiplication is a topological group, and the canonical mapping π : G → G/H is an open homomorphism 
[2, Theorem 1.5.3]. The reader may consult [2,7] for unstated notations and terminology.

2. The three space property for sequentially compact sets

A topological property P is called an inverse fiber property [5] if for any mapping f : X → Y such that 
the space Y and the fibers of f have P, the space X also has P. P is called a regular-inverse fiber property
if for any mapping f : X → Y such that the space X is regular, and the space Y and the fibers of f have P, 
the space X also has P.

Lemma 2.1 ([5]). Every inverse fiber property is a three space property.

Let P be a topological property. A space X is called P-closed (resp., P-compact) if every subset of X
with property P is closed (resp., compact). A space X is called locally P if for every x ∈ X there exists a 
neighborhood U of the point x with property P.

Lemma 2.2. Suppose that P is a topological property preserved by continuous mappings and also inherited 
by closed sets. Then the property of being P-closed (resp., P-compact) is a regular-inverse fiber property 
(resp., inverse fiber property).

Proof. First, let f : X → Y be a mapping such that the space X is regular, and the space Y and the fibers 
of f are P-closed. Suppose to the contrary that C is a non-closed subset of X with property P. Then one 
can take a point x ∈ C \ C. The set K = C ∩ f−1(f(x)) has property P as a closed subset of C and, since 
the fiber f−1(f(x)) is P-closed, K is closed in X. Since X is regular and x /∈ K, we can choose an open 
neighborhood U of x in X such that U ∩ K = ∅. Then D = U ∩ C has property P as a closed subset of 
C and x ∈ D \D. It follows from our choice of U that D ∩K = ∅ and f(x) ∈ f(D) \ f(D), so f(D) is a 
non-closed subset of Y with property P. This contradicts our assumption about Y .

Second, let f : X → Y be a mapping such that the space Y and the fibers of f are P-compact. Let C
be a subset of X with property P. Then the image D = f(C) is a subset of Y with property P, so D is 
compact. In addition, if y ∈ D, then Cy = C ∩ f−1(y) is a subset with property P as a closed subset of C. 
Since f−1(y) is P-compact, it follows that Cy is compact. So, g = f |C : C → D is a mapping with compact 
fibers. If K is closed in C, then K is a subset of X with property P, so f(K) = g(K) is a subset with 
property P in Y , hence g(K) is compact and g(K) is closed in D. It follows that g is a perfect mapping. 
Since D is compact, we conclude that C is also compact. �

The proof of the following lemma is direct.

Lemma 2.3. Let P be a topological property such that

(1) the disjoint topological sum of spaces with property P has property P;
(2) P is inherited by open sets;
(3) P is preserved by continuous open mappings.

Then a space X is locally P if and only if it has property P.
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Let us recall some concepts related to convergence. Let X be a topological space. A subset A of X is called 
sequential closed if no sequence of points of A converges to a point not in A. X is called sequential [9] if each 
sequentially closed subset of X is closed. A space X is called Fréchet at a point x ∈ X if for every A ⊂ X

with x ∈ A ⊂ X there is a sequence {xn}n in A such that {xn}n converges to x in X. A space X is called 
Fréchet [9] if it is Fréchet at every point x ∈ X. A space X is called strictly Fréchet at a point x ∈ X (resp., 
strongly Fréchet at a point x ∈ X) if whenever {An}n is a sequence (resp., decreasing sequence) of subsets 
in X and x ∈

⋂
n∈N

An, there exists xn ∈ An for each n ∈ N such that the sequence {xn}n converges to x. 
A space X is called strictly Fréchet [10] (resp., strongly Fréchet [24]) if it is strictly Fréchet (resp., strongly 
Fréchet) at every point x ∈ X. Fréchet spaces (resp., strongly Fréchet spaces, strictly Fréchet spaces) are also 
called Fréchet–Urysohn spaces (resp., strongly Fréchet–Urysohn spaces, strictly Fréchet–Urysohn spaces).

Lemma 2.3 is applicable to the following properties of spaces [11]: first-countable spaces, strictly Fréchet 
spaces, strongly Fréchet spaces, Fréchet spaces, sequential spaces, and k-spaces.

It is well-known [20] that

(1) every first-countable space is a strictly Fréchet space;
(2) every strictly Fréchet space is a strongly Fréchet space;
(3) every strongly Fréchet space is a Fréchet space;
(4) every Fréchet space is a sequential space;
(5) every sequential space is a k-space.

Lemma 2.4. If all countably compact (resp., sequentially compact) subsets of a topological space X are 
sequential, then all countably compact (resp., sequentially compact) subsets of X are closed.

Proof. Suppose that all countably compact (resp., sequentially compact) subsets of the space X are se-
quential. Let A be a countably compact (resp., sequentially compact) subset of X. If the set A is not closed 
in X, take a point x ∈ A \ A. Put B = A ∪ {x}. Then B is also countably compact (resp., sequentially 
compact) in X, and B is sequential. Since A is not closed in B, then A is not sequentially closed in B, thus 
there exists a sequence {xn}n in A such that the sequence {xn}n converges to x in B. Since A is countably 
compact (resp., sequentially compact), the sequence {xn}n has an accumulation point in A, then x is the 
unique accumulation point and x ∈ A, which is a contradiction. Hence, A is closed in X. This completes 
the proof. �

The character of a point x (resp., a subset F ) in a topological space X is denoted by χ(x, X)
(resp., χ(F, X)), where χ(x, X) = min{|B| : B is a local base at x of X} + ω, χ(F, X) = min{|B| :
B is a neighborhood base at F in X} + ω. Similarly, the character of a topological space X is denoted 
by χ(X).

Lemma 2.5. First-countability is an inverse fiber property for sequentially compact sets, i.e., the property 
“all sequentially compact sets are first-countable” is an inverse fiber property.

Proof. Let f : X → Y be a mapping. Suppose that all sequentially compact subsets of both the space Y
and of the fibers f−1(y) for each y ∈ Y are first-countable. Let C be a sequentially compact subspace of X. 
Then the image K = f(C) is sequentially compact and, hence, satisfies χ(K) ≤ ω. Take an arbitrary point 
x ∈ C and put y = f(x). Then χ(y, K) ≤ ω. Let g = f |C : C → K. Since the space K is first-countable 
and every sequentially compact subset of a first-countable space is closed, g is a closed mapping. The set 
Cx = g−1(y) = C ∩ f−1(f(x)) is sequentially compact as a closed subset of C, so χ(Cx) ≤ ω. We have 
χ(g(x), K) ≤ ω and χ(x, Cx) ≤ ω, whence it follows that χ(x, C) ≤ ω by [7, 3.7.F]. This proves that 
χ(C) ≤ ω, i.e., C is first-countable. �



S. Lin et al. / Topology and its Applications 180 (2015) 167–180 171
A topological space X has a Gδ-diagonal [12] if the diagonal Δ = {(x, x) : x ∈ X} of X ×X is a Gδ-set 
in the product space X ×X.

Lemma 2.6. Let G be a topological group. If every sequentially compact subspace of G is first-countable, then 
every sequentially compact subspace of G is metrizable.

Proof. Suppose that X is a non-empty sequentially compact subset of G. Consider the mapping 
j : G ×G → G defined by j(x, y) = x−1y for all x, y ∈ G. Clearly, X ×X is sequentially compact and j is 
continuous, so the image F = j(X ×X) is a sequentially compact subset of G which contains the identity e
of G. Then F is first-countable by our assumption, so {e} is a Gδ-set in F , then (j|X×X)−1(e) = Δ is the 
diagonal in X ×X, and Δ is a Gδ-set in X ×X, i.e., the sequentially compact space X has a Gδ-diagonal, 
thus X is metrizable [12, Theorem 2.14]. �

The three space problem for compact (resp., countably compact, pseudocompact) sets was discussed 
by Bruguera and Tkachenko in [5]. The next theorem gives some results with respect to the three space 
property for sequentially compact sets.

Theorem 2.7. Each of the following is a three space property:

(a) all sequentially compact subsets are closed;
(b) all sequentially compact subsets are compact;
(c) all sequentially compact subsets are sequential;
(d) all sequentially compact subsets are first-countable;
(e) all sequentially compact subsets are metrizable.

Proof. By Lemmas 2.1 and 2.2, (a) and (b) hold.
Suppose that H is a closed subgroup of a topological group G. Suppose also that all sequentially compact 

subsets of both the group H and the quotient space G/H are sequential. Then all sequentially compact 
subsets of H and G/H are closed by Lemma 2.4. It follows from (a) that all sequentially compact subsets 
of G are closed. Let B be a sequentially compact subset of G, and suppose that A is a sequentially closed 
subset of B. Then A is also a sequentially compact subset of G, thus A is closed in G, i.e., B is sequential. 
Hence, all sequentially compact subsets of G are sequential. Thus, (c) holds.

By Lemmas 2.1 and 2.5, (d) holds. By Lemma 2.6 and (d), (e) holds. �
It is worth noting that metrizability of sequentially compact sets is not an inverse fiber property. Indeed, 

the canonical projection q of the Alexandroff double circle [7, Example 3.1.26] X onto the closed unit circle 
S

1 is a two-to-one mapping, so the image S1 of X and the fibers of q are sequentially compact and metrizable, 
while X is a non-metric sequentially compact space. Hence, Theorem 2.7(e) reflects a special behavior of 
sequential compactness in topological groups.

A space X has countable tightness [20] if for each subset A of X and each point x ∈ A, there exists a 
countable subset C of A such that x ∈ C. Countable tightness is a three space property for compact subsets 
[5, Theorem 2.16(o)].

Question 2.8. Is countable tightness a three space property for sequentially compact sets, i.e., is the property 
“all sequentially compact sets are of countable tightness” a three space property?

In the end of this section we consider Question 1.3.
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Lemma 2.9. If every compact (resp., countably compact, sequentially compact) subspace of a topological 
group G is Fréchet, then every compact (resp., countably compact, sequentially compact) subspace of G is 
also strongly Fréchet.

Proof. First, every compact (resp., countably compact, sequentially compact) subset of the topological group 
G is closed by our assumption and Lemma 2.4. Let A be a compact (resp., countably compact, sequentially 
compact) subset of G. Then A is closed and Fréchet. Suppose that {An}n is a decreasing sequence of subsets 
of A with a ∈

⋂
n∈N

An. We can assume that a is an accumulation point of A. Since A is Fréchet, there 
exists a sequence {an}n in A \ {a} converging to a. Put

B = a−1A, and Bn = a−1An, bn = a−1an for each n ∈ N.

Then the set B is closed in G. Let e be the neutral element of the group G. Then e ∈ a−1An = Bn ⊂ B, 
bn ∈ B \ {e} for each n ∈ N, and the sequence {bn}n converges to e. There exists a sequence {Vn}n of 
symmetric open neighborhoods of e in G with bn /∈ V 2

n for each n ∈ N. For each n ∈ N, put Cn = bn(Bn∩Vn). 
Then bn ∈ Cn for e ∈ Bn ∩ Vn, while e /∈ Cn since Vn ∩ Cn ⊂ Vn ∩ bnVn = ∅. Put

D =
⋃

{Cn : n ∈ N}, and S = {e} ∪ {bn : n ∈ N}.

Then D ⊂
⋃

n∈N
bnBn ⊂ SB.

Next, we shall show that the subspace SB of G is closed and Fréchet. Obviously, S is compact and 
sequentially compact. Since the set A is compact (resp., countably compact, sequentially compact), then 
B is also compact (resp., sequentially compact, because a Fréchet countably compact space is sequentially 
compact), thus the Cartesian product S×B of the spaces S and B is compact (resp., sequentially compact). 
Since the multiplication in G is jointly continuous and the subset SB of G is the continuous image of the 
subset S × B of G × G under the multiplication mapping, SB is compact (resp., sequentially compact). 
Thus SB is closed and Fréchet by our assumption.

Since bn ∈ Cn for each n ∈ N and bn → e, then e ∈ D ⊂ SB, and there is a sequence {dk}k in D
converging to e. For each n ∈ N, since e /∈ Cn, Cn contains only finitely many terms of the sequence {dk}k. 
There is a subsequence {Cnk

}k of the sequence {Cn}n such that dk ∈ Cnk
for each k ∈ N. It follows 

from Cnk
⊂ bnk

Bnk
= bnk

a−1Ank
that dk = bnk

a−1xnk
for some xnk

∈ Ank
for each k ∈ N. Then 

xnk
= a(bnk

)−1dk → a whenever k → ∞. Take yn = xnk
when nk−1 < n � nk, then yn ∈ An for each n ∈ N

and yn → a. Hence, A is strongly Fréchet. �
Lemma 2.10 ([3, Proposition 2.18]). Suppose that X is a regular space, and that f : X → Y is a closed 
mapping. Suppose also that b ∈ X is a Gδ-point in the space F = f−1(f(b)) (i.e., the singleton {b} is a 
Gδ-set in the space F ) and F is Fréchet at b. If the space Y is strongly Fréchet, then X is Fréchet at b.

Lemma 2.11. Suppose that X is a regular space, and that f : X → Y is a closed mapping. Suppose also that 
b ∈ X is a Gδ-point in the space F = f−1(f(b)) and F is countably compact and strictly Fréchet at b. If the 
space Y is strictly Fréchet at f(b), then X is strictly Fréchet at b.

Proof. Using the regularity of the topological space X, we can construct in a standard way a sequence 
{Un}n of open subsets in X such that {b} = F ∩

⋂
n∈N

Un, and Un+1 ⊂ Un for each n ∈ N.
Let {An}n be a sequence of subsets in X and b ∈

⋂
n∈N

An. For each n ∈ N, put Bn = An ∩ Un and 
Cn = f(Bn). Clearly, b ∈ Bn and, therefore, the continuity of f implies that c = f(b) ∈ Cn. Since Y is 
strictly Fréchet at c, there exists yn ∈ Cn for each n ∈ N such that the sequence {yn}n converges to c. For 
each n ∈ N, fix xn ∈ Bn ⊂ An with f(xn) = yn. We claim that the sequence {xn}n converges to b, which 
implies X is strictly Fréchet at b.
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First, we show that each subsequence of the sequence {xn}n in X has an accumulation point in the 
countably compact set F . Let {xnk

}k be a subsequence of {xn}n. Then f(xnk
) → c. If {f(xnk

) : k ∈ N} is a 
finite set, we can assume that f(xnk

) = c for each k ∈ N. Since F is countably compact, the sequence {xnk
}k

in X has an accumulation point in F . If {f(xnk
) : k ∈ N} is an infinite set, then the set {f(xnk

) : k ∈ N} is 
not closed discrete in Y . Since f is closed, the sequence {xnk

}k has an accumulation point in F . It follows 
that each subsequence of {xn}n has an accumulation point in F . Next, take an arbitrary point z ∈ F

distinct from b. There exists m ∈ N such that z /∈ Um. Since {xn : n > m} ⊂ Um, it follows that z cannot 
be an accumulation point of any subsequence of {xn}n. Thus, b is the unique accumulation point of every 
subsequence of {xn}n, which implies that {xn}n converges to b. �
Theorem 2.12. Suppose that H is a closed subgroup of a topological group G such that all compact subsets 
(resp., countably compact, sequentially compact) of the group H are first-countable. If the quotient space 
G/H has one of the following properties, then so does the group G:

(a) all compact (resp., countably compact, sequentially compact) subsets are strongly Fréchet;
(b) all compact (resp., countably compact, sequentially compact) subsets are strictly Fréchet.

In addition, if H is an invariant subgroup of the group G and the quotient group G/H has one of the 
following properties, then so does the group G:

(c) all compact (resp., countably compact, sequentially compact) subsets are Fréchet.

Proof. It is well-known that every T2 topological group is regular. Let C be a compact (resp., countably 
compact, sequentially compact) subset of the topological group G. By Lemmas 2.1, 2.2 and 2.4, the set C
is closed in G. Put f = π|C : C → π(C). Then π(C) is compact (resp., countably compact, sequentially 
compact). It follows from Lemma 2.4 that f is a closed mapping, and f−1(f(b)) = π−1(π(b)) ∩C = bH ∩C

is first-countable for each b ∈ C. By Lemmas 2.9, 2.10 and 2.11, the required conclusions follows. �
It is also worth noting that the property “all compact sets are Fréchet” is not an inverse fiber property. 

Indeed, Simon [23] constructed a compact Fréchet space X such that X2 is not Fréchet. It is easy to see 
that the product space X2 is compact and sequentially compact.

3. Quotients with respect to second-countable subgroups

In this section we consider extensions of topological groups with certain networks. Being separable and 
metrizable is a three space property [2, Corollary 3.3.21]. Every separable metrizable space is a cosmic space, 
i.e., a regular space with a countable network. But, being a cosmic space is not a three space property [27]. 
Under certain additional conditions on a closed subgroup of a topological group we can obtain some new 
extension properties of topological groups.

Let P be a family of subsets of a topological space X. P is called a network [7] for X if whenever 
x ∈ U with U open in X, then there exists P ∈ P such that x ∈ P ⊂ U . P is called a cs-network [14]
for X if, given a sequence {xn}n converging to a point x in X and a neighborhood U of x in X, then 
{x} ∪ {xn : n ≥ n0} ⊂ P ⊂ U for some n0 ∈ N and some P ∈ P. A space is an ℵ0-space if it is a regular 
space having a countable cs-network [14].

It is obvious that [12]:

(1) every separable metric space is an ℵ0-space;
(2) every ℵ0-space is a cosmic space;
(3) every cosmic space is a paracompact, separable space.
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Lemma 3.1 ([2, Theorem 1.5.23]). Suppose that G is a topological group and H is a closed and separable 
subgroup of G. If Y is a separable subset of G/H, then π−1(Y ) is also separable in G.

Lemma 3.2 ([3, Corollary 1.2]). A locally paracompact topological group is paracompact.

A family P of subsets of a topological space X is called star-countable [7] if the collection {P ∈ P :
P ∩ P0 �= ∅} is countable for any P0 ∈ P.

Lemma 3.3 ([6, Lemma 3.10]). Every star-countable family P of subsets of a topological space X can be 
expressed as P =

⋃
{Pα : α ∈ Λ} where each subfamily Pα is countable and (

⋃
Pα) ∩ (

⋃
Pβ) = ∅ whenever 

α �= β.

Theorem 3.4. Let H be a closed second-countable subgroup of a topological group G. If the quotient space 
G/H is a local ℵ0-space (resp., locally cosmic space), then G is a topological sum of ℵ0-subspaces (resp., 
cosmic subspaces).

Proof. We need only to consider the case of ℵ0-spaces, the case of cosmic spaces is similar.
Suppose that the quotient space G/H is a local ℵ0-space. Then there exists an open neighborhood Y of 

H in G/H such that Y has a countable cs-network. Put X = π−1(Y ). Then X is an open neighborhood of 
the neutral element e in G. By Lemma 3.1, X is separable. Let B = {bm : m ∈ N} be a countable dense 
subset of X.

Since the subspace H of the topological group G is first-countable at the neutral element e of G, there 
is a countable family {Un : n ∈ N} of open symmetric neighborhoods of e in G such that U3

n+1 ⊂ Un ⊂ X

for each n ∈ N and the family {Un ∩H : n ∈ N} is a local base at e for H. Choose a countable cs-network 
{Pk : k ∈ N} for the ℵ0-space Y .

Claim 1: X is an ℵ0-space.
Put F = {π−1(Pk) ∩ bmUn : k, m, n ∈ N}. Then F is a countable family of subsets of X. Let {xi}i be a 

sequence converging to a point x in X and U be a neighborhood of x in X. Then U is also a neighborhood 
of x in G. Take an open neighborhood V of e in G such that xV 2 ⊂ U . Since {Un ∩H : n ∈ N} is a local 
base at e for H, there exists n ∈ N such that Un ∩H ⊂ V ∩H. Since B is dense in X, and xUn+1 ∩X is 
non-empty and open in X, then bm ∈ xUn+1 for some m ∈ N. Since π : G → G/H is an open mapping 
[2, Theorem 1.5.1], then π(xUn+1 ∩ xV ) is an open neighborhood of π(x) in the space Y and the sequence 
{π(xi)}i converges to π(x) in Y , thus {π(x)} ∪ {π(xi) : i ≥ i0} ⊂ Pk ⊂ π(xUn+1 ∩ xV ) for some i0, k ∈ N. 
We claim that π−1(Pk) ∩ bmUn+1 ⊂ U .

Indeed, take any z ∈ π−1(Pk) ∩ bmUn+1. Then π(z) ∈ Pk ⊂ π(xUn+1 ∩ xV ), thus z ∈ (xUn+1 ∩ xV )H =
x(Un+1 ∩ V )H. Since z ∈ bmUn+1 and bm ∈ xUn+1, then z ∈ xU2

n+1. Hence, x−1z ∈ [(Un+1 ∩ V )H] ∩U2
n+1. 

There exist a ∈ Un+1 ∩ V, h ∈ H and u ∈ Un+1 such that x−1z = ah = u2, then h = a−1u2 ∈ U3
n+1 ⊂ Un, 

so x−1z ∈ (Un+1 ∩ V )(Un ∩H). It follows that z ∈ x(Un+1 ∩ V )(Un ∩H) ⊂ xV 2 ⊂ U .
Further, it follows from bm ∈ xUn+1 that x ∈ bmUn+1, then there is i1 ≥ i0 such that xi ∈ bmUn+1 when 

i ≥ i1, thus {x} ∪ {xi : i ≥ i1} ⊂ π−1(Pk) ∩ bmUn+1. Hence, F is a countable cs-network for X, and this 
completes the proof of Claim 1.

By the homogeneity of the topological group G and Claim 1, G is also a local ℵ0-space. Then G is a 
locally paracompact space, so G is a paracompact space by Lemma 3.2. Let A be an open cover of G by 
ℵ0-subspaces. Since the property of being an ℵ0-space is hereditary, we can assume that A is locally finite 
in G by the paracompactness of G. Since every point-countable family of open subsets in a separable space 
is countable, the family A is star-countable. It follows from Lemma 3.3 that A =

⋃
{Bα : α ∈ Λ}, where 

each subfamily Bα is countable and (
⋃
Bα) ∩ (

⋃
Bβ) = ∅ whenever α �= β. Put Xα =

⋃
Bα for each α ∈ Λ. 

Then G =
⊕

Xα.
α∈Λ
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Claim 2: Xα is an ℵ0-subspace for each α ∈ Λ.
Put Bα = {Bα,n : n ∈ N}, where each Bα,n is an open ℵ0-subspace of G. Put Pα =

⋃
n∈N

Pα,n, where 
Pα,n is a countable cs-network for the ℵ0-space Bα,n for each n ∈ N. It is easy to see that Pα is a countable 
cs-network for Xα. Hence, Xα is an ℵ0-space.

It follows from Claim 2 that G is a topological sum of ℵ0-subspaces. �
Corollary 3.5. Let H be a closed second-countable subgroup of a topological group G. If the quotient space 
G/H is an ℵ0-space (resp., cosmic space), then G is also an ℵ0-space (resp., cosmic space [2, Prob-
lems 4.6.C]).

Remark 3.6. The condition “H is second-countable” is essential in Theorem 3.4 and Corollary 3.5, it cannot 
be replaced by the condition “H has a countable network”, since there is a non-cosmic, Abelian topological 
group G0 with a closed cosmic subgroup H0 such that the quotient group G0/H0 is separable metric [27].

Next, we consider the spaces with a star-countable cs-network and similar networks. We recall some 
concepts related to networks for a topological space. Let P be a family of subsets of a topological space X. 
P is called a k-network [13] for X if whenever K ⊂ U with K compact and U open in X, there exists a 
finite family P ′ ⊂ P such that K ⊂

⋃
P ′ ⊂ U . P is called a wcs∗-network [17] for X if, given a sequence 

{xn}n converging to a point x in X and a neighborhood U of x in X, there exists a subsequence {xni
}i of 

the sequence {xn}n such that {xni
: i ∈ N} ⊂ P ⊂ U for some P ∈ P.

Every base is a k-network and a cs-network for a topological space, and every k-network or every 
cs-network is a wcs∗-network for a topological space, but the converse does not hold [16]. It is easy to 
verify that the following are equivalent for a space X: (1) X has a countable cs-network; (2) X has a 
countable k-network; (3) X has a countable wcs∗-network.

Lemma 3.7 ([15, Lemma 2.1.6]). Let P be a point-countable family of subsets of a space X. Then P is a 
k-network for X if and only if it is a wcs∗-network for X and each compact subset of X is first-countable 
(or sequential).

Theorem 3.8. Let H be a closed second-countable subgroup of a topological group G. If the quotient space 
G/H has a star-countable cs-network (resp., wcs∗-network, k-network), then G has also a star-countable 
cs-networks (resp., wcs∗-network, k-network).

Proof. Since the subspace H of the topological group G is first-countable at the neutral element e of G, there 
exists a countable family {Un : n ∈ N} of open symmetric neighborhoods of e in G such that U3

n+1 ⊂ Un

for each n ∈ N and the family {Un ∩H : n ∈ N} is a local base at e for H.
(1) Suppose that G/H has a star-countable cs-network (resp., wcs∗-network).
Let P = {Pα : α ∈ Λ} be a star-countable cs-network (resp., wcs∗-network) for the space G/H. For each 

α ∈ Λ, the family {Pα ∩Pβ : β ∈ Λ} is a countable wcs∗-network for Pα, thus Pα is a cosmic space, and Pα

is separable. By Lemma 3.1, the set π−1(Pα) is separable. Let Bα = {bα,m : m ∈ N} be a countable dense 
subset of π−1(Pα).

Put

F =
{
π−1(Pα) ∩ bα,mUn : α ∈ Λ, and m,n ∈ N

}
.

Then F is a star-countable family of G. We shall show that F is a cs-network (resp., wcs∗-network) for G.
Let {xi}i be a sequence converging to a point x in G and U be a neighborhood of x in G. Take an open 

neighborhood V at e in G such that xV 2 ⊂ U .
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Case 1. P is a cs-network.
Since {Un ∩ H : n ∈ N} is a local base at e for H, there exists n ∈ N such that Un ∩ H ⊂ V ∩ H. 

Since π : G → G/H is an open mapping, then {π(x)} ∪ {π(xi) : i ≥ i0} ⊂ Pα ⊂ π(xUn+1 ∩ xV ) for some 
i0 ∈ N and some α ∈ Λ. Since x ∈ π−1(Pα), then xUn+1 ∩ π−1(Pα) is non-empty and open in the subspace 
π−1(Pα). And since Bα is dense in π−1(Pα), it follows that bα,m ∈ xUn+1 for some m ∈ N.

Claim: π−1(Pα) ∩ bα,mUn+1 ⊂ U .
Indeed, take any z ∈ π−1(Pα) ∩ bα,mUn+1. Then π(z) ∈ Pα ⊂ π(xUn+1 ∩ xV ), thus z ∈ x(Un+1 ∩ V )H. 

Since z ∈ bα,mUn+1 and bα,m ∈ xUn+1, then z ∈ xU2
n+1. As in Claim 1 of the proof of Theorem 3.4, it 

follows that z ∈ x(Un+1 ∩ V )(Un ∩H) ⊂ xV 2 ⊂ U .
Further, it follows from bα,m ∈ xUn+1 that x ∈ bα,mUn+1, then there is i1 ≥ i0 such that xi ∈ bα,mUn+1

whenever i ≥ i1, thus {x} ∪ {xi : i ≥ i1} ⊂ π−1(Pα) ∩ bα,mUn+1.
Hence, G has a star-countable cs-network.

Case 2. P is a wcs∗-network.
Since {Un ∩ H : n ∈ N} is a local base at e for H, there exists n ∈ N such that Un+1 ∩ H ⊂ V ∩ H. 

Since P is a wcs∗-network for G/H, there is a subsequence {π(xij )}j of the sequence {π(xi)}i such that 
{π(xij ) : j ∈ N} ⊂ Pα ⊂ π(xUn+1 ∩ xV ) for some α ∈ Λ. We can assume that xij ∈ xUn+2 for each j ∈ N

because the sequence {xi}i converges x. Since xi1 ∈ π−1(Pα), then xi1Un+2 ∩ π−1(Pα) is non-empty and 
open in the subspace π−1(Pα). And since Bα is dense in π−1(Pα), it follows that bα,m ∈ xi1Un+2 ⊂ xU2

n+2
for some m ∈ N.

As in Case 1, we have the inclusion π−1(Pα) ∩ bα,mUn+1 ⊂ U (see Claim).
Hence, G has a star-countable wcs∗-network.
(2) Suppose that G/H has a star-countable k-network.
G has a star-countable wcs∗-network by Case 2. It follows from Lemma 3.7 that each compact subset 

of G/H is first-countable. Since the property “each compact subset is first-countable” is a three space 
property [2, Lemma 3.3.23 and Theorem 3.3.24], then each compact subset of G is first-countable, thus G
has a star-countable k-network by Lemma 3.7. �
Question 3.9. Let H be a closed second-countable subgroup of a topological group G. If the quotient space 
G/H has a point-countable (resp., compact-countable) cs-network, does G have a point-countable (resp., 
compact-countable) cs-networks?

A partial answer to Question 3.9 will be given in Theorem 3.11.

Lemma 3.10 ([19, Theorem 3.6]). Let G be a sequential topological group with a point-countable k-network. 
Then G is a metrizable space or a topological sum of cosmic spaces.

Theorem 3.11. Suppose that H is a closed, second-countable and invariant subgroup of a topological group G. 
If the quotient group G/H is a sequential space with a point-countable cs-network (resp., k-network, 
wcs∗-network), then G has a point-countable cs-network (resp., k-network, wcs∗-network).

Proof. Since the space G/H is sequential, it has a point-countable k-network by Lemma 3.7. It follows 
from Lemma 3.10 that the quotient group G/H is a metrizable space or a topological sum of cosmic 
spaces. If G/H is metrizable, then the group G is metrizable [2, Corollary 1.5.21]. We can assume that 
G/H is a topological sum of cosmic spaces. Then G/H has a point-countable cs-network (resp., k-network, 
wcs∗-network) P = {Pα : α ∈ Λ} such that Pα is a cosmic subset for each α ∈ Λ. Since each π−1(Pα)
is separable by Lemma 3.1, it can be shown that the space G has a point-countable cs-network (resp., 
k-network, wcs∗-network) by a method similar to the one in the proof of Theorem 3.8. �
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4. Quotients with respect to locally compact metrizable subgroups

There exists a closed second-countable and invariant subgroup H of a topological group G such that the 
quotient group G/H is compact, but G is not a k-space.

Example 4.1 ([1, Theorem 2.19]). (2ω1 = 2ω) There exists an Abelian topological group G with a closed 
second-countable subgroup H such that the quotient group G/H(= {0, 1}ω1) is compact, and G has a 
Gδ-diagonal, but G is not a p-space.

In the above Arhangel’skǐı’s example, the group G is not a k-space. In fact, if G is a k-space, then G is 
also a sequential space [20, Theorem 7.3]. Since sequentiality is preserved by a quotient mapping [9], then 
the quotient group G/H is a sequential space, a contradiction.

Arhangel’skǐı [1] established some extension theorems in topological groups in which he considered quo-
tients with respect to locally compact subgroups or locally compact metrizable subgroups. The following 
facts are obtained in [1,3]. Let G be a topological group and H a subgroup of G.

(a) If the quotient space G/H is a Čech-complete space (resp., Σ-space, strong Σ-space, p-space, k-space, 
paracompact space), then so is the group G provided H is locally compact.

(b) If the quotient space G/H is a Fréchet space (resp., strongly Fréchet space, or has countable tightness), 
then so is the group G provided H is locally compact and metrizable.

In this section we continue to consider the extensions of topological groups with respect to locally compact 
metrizable subgroups. The following lemma about quotients with respect to locally compact subgroups was 
proved by Arhangel’skǐı [1].

Lemma 4.2 ([2, Theorem 3.2.2]). Suppose that G is a topological group, H is a locally compact subgroup 
of G, and π : G → G/H is the natural quotient mapping of G onto the quotient space G/H. Then there 
exists an open neighborhood U of the neutral element e such that π(U) is closed in G/H and the restriction 
π|U : U → π(U) is a perfect mapping, thus π is an open locally perfect mapping.

Theorem 4.3. Suppose that H is a locally compact metrizable subgroup of a topological group G. If the 
quotient space G/H is sequential, then G is also sequential.

Proof. By Lemma 4.2, there exists an open neighborhood U of the neutral element e in G such that 
π|U : U → π(U) is a perfect mapping and π(U) is closed in G/H.

Claim 1: Suppose that {xn}n is a sequence in U such that {π(xn)}n is a convergent sequence in π(U). 
If x is an accumulation point of the sequence {xn}n, there exists a subsequence of {xn}n which converges 
to x.

Since π|U is perfect, each subsequence of the sequence {xn}n has an accumulation point in U . Set 
F = π−1(π(x)) ∩U . Since π−1(π(x)) = xH is metrizable and G is regular, there is a sequence {Uk}k of open 
subsets in G such that Uk+1 ⊂ Uk for each k ∈ N and {x} = F ∩

⋂
k∈N

Uk. Take a subsequence {xnk
}k of 

{xn}n such that xnk
∈ Uk for each k ∈ N. Let p be an accumulation point of a subsequence of the sequence 

{xnk
}k. Then π(p) = π(x) and p ∈

⋂
k∈N

Uk, thus p = x. It follows that x is the unique accumulation point 
of every subsequence of {xnk

}k, then xnk
→ x.

Take an open neighborhood V of e in G such that V ⊂ U .

Claim 2: If C is sequentially closed in V , then π(C) is closed in π(V ).
Let {yn}n be a sequence in π(C) such that yn → y in π(V ). We shall show that y ∈ π(C). Take xn ∈ C

with π(xn) = yn for each n ∈ N. Since each subsequence of the sequence {xn}n has an accumulation point, 



178 S. Lin et al. / Topology and its Applications 180 (2015) 167–180
by Claim 1, there are a point x ∈ π−1(y) and a subsequence {xnk
}k of {xn}n such that xnk

→ x. Since 
C is sequentially closed, then x ∈ C, and y ∈ π(C). This shows that π(C) is sequentially closed in π(V ). 
Since π|U : U → π(U) is a closed mapping and π(U) is closed in G/H, π(V ) is closed in G/H. Since G/H

is sequential, then π(V ) is also sequential, so π(C) is closed in π(V ).

Claim 3: V is a sequential subspace.
Suppose that there exists a non-closed, sequentially closed subset A of V . Take a point x ∈ clV (A) \ A. 

Clearly, clV (A) = A. Let f = π|V : V → π(V ). The set B = A ∩ f−1(f(x)) is sequentially closed as a closed 
subset of A and, since the fiber f−1(f(x)) = (π−1π(x)) ∩V is sequential, B is closed in V . Since x /∈ B, there 
is an open neighborhood W of x in V such that W ∩B = ∅. Then C = W ∩A is also sequentially closed as 
a closed subset of A and x ∈ C \ C. It follows that C ∩ f−1(f(x)) = W ∩B = ∅, then f(x) ∈ f(C) \ f(C), 
so f(C) = π(C) is not closed in π(V ), a contradiction with Claim 2.

By Claim 3 and the homogeneity of G, G is a locally sequential space. Hence, G is a sequential space. �
Remark 4.4. There exist two Fréchet topological groups G and H such that the product space G ×H is not 
of countable tightness (see [22, Theorem 6.6] or [26]). Put H ′ = {e} × H, where e is the neutral element 
in G. Then H ′ is a closed invariant subgroup of G ×H, and the quotient group (G ×H)/H ′ is isomorphic 
to G. Thus, H ′ and (G ×H)/H ′ is sequential, but G ×H is not sequential. Therefore, sequentiality is not 
a three space property.

In view of Theorems 3.11 and 4.3 the following corollary is immediate.

Corollary 4.5. Suppose that H is a locally compact, second-countable and invariant subgroup of a topolog-
ical group G. If the quotient group G/H is a sequential space with a point-countable cs-network (resp., 
k-network, wcs∗-network), then G is also a sequential space with a point-countable cs-network (resp., 
k-network, wcs∗-network).

Theorem 4.6. Suppose that H is a locally compact metrizable subgroup of a topological group G. If the 
quotient space G/H is strictly Fréchet, then G is also strictly Fréchet.

Proof. By Lemma 4.2, there exists an open neighborhood U of the neutral element e in the topological group 
G such that π|U : U → π(U) is a perfect mapping and π(U) is closed in G/H. Put f = π|U : U → π(U).

It is obvious that f(U) = π(U) is strictly Fréchet, and f−1(f(b)) = π−1(π(b)) ∩ U = bH ∩ U is compact 
and metrizable for each b ∈ U . By Lemma 2.10, U is strictly Fréchet. Thus, G is locally strictly Fréchet, 
and G is strictly Fréchet. �

A subset A of a topological space X is called sequentially open [9] if X \A is sequentially closed. A space 
X is called sequentially connected [8] if X cannot be represented as the union of two non-empty disjoint 
and sequentially open subsets of X. Every sequentially connected space is connected, and every connected 
and sequential space is sequentially connected. It is known that connectedness is a three space property [2, 
Exercises 1.5.e].

Theorem 4.7. Suppose that H is a locally compact metrizable connected and invariant subgroup of a topo-
logical group G. If the quotient group G/H is sequentially connected, then G is also sequentially connected.

Proof. If the topological group G is not sequentially connected, there are two non-empty, disjoint and 
sequentially open subsets A and B of G such that G = A ∪B. If y ∈ G/H, then π(x) = y for some x ∈ G, 
so π−1(y) = xH is sequentially connected, thus π−1(y) ⊂ A or π−1(y) ⊂ B. It follows that there exist two 
non-empty disjoint subsets C and D of G/H such that G/H = C ∪D, π−1(C) = A and π−1(D) = B.
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Next, we shall show that C, D are sequentially open in G/H. This gives a contradiction since G/H is 
sequentially connected.

If C is not sequentially open in G/H, there is a sequence {yn}n in G/H such that yn → y ∈ C with 
yn /∈ C for each n ∈ N. Then yny−1 → e′ ∈ Cy−1 in G/H, where e′ is the neutral element in G/H. Let U
be the open neighborhood of e in G as the proof of Theorem 4.3, where e is the neutral element in G. Since 
π(U) is open, we can assume that yny−1 ∈ π(U) for each n ∈ N. By Claim 1 in the proof of Theorem 4.3, 
there exists a convergent sequence {xk}k in U such that xk → x for some x ∈ G and π(xk) = ynk

y−1

for each k ∈ N, here {ynk
}k is a subsequence of {yn}n with nk → ∞. Then π(x) = e′ ∈ Cy−1, so 

x ∈ π−1(Cy−1) = π−1(C)π−1(y−1). Since π−1(C) = A is sequentially open in G, π−1(C)π−1(y−1) is also 
sequentially open in G, then xk ∈ π−1(C)π−1(y−1) for some k ∈ N, so ynk

y−1 = π(xk) ∈ Cy−1, and ynk
∈ C, 

a contradiction. Hence, C is sequentially open. By the same reason, D is also sequentially open. �
Question 4.8. Suppose that H is a locally compact and sequentially connected subgroup of a topological 
group G. Is G sequentially connected if the quotient space G/H is sequentially connected?

Addendum
The answer to Question 4.8 is “yes”. The following result is obtained in [18, Theorem 3.5]: Let H be a 

closed, sequentially connected, feathered subgroup of a Hausdorff topological group G. If the quotient space 
G/H is sequentially connected, then so is G.
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