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In this paper, we discuss submetrizability in semitopological groups. It gives a
positive answer to a question posed in Tkachenko (2013) [15].
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1. Introduction

Recall that a semitopological group is a group with a topology such that the multiplication in the group
is separately continuous. A paratopological group is a group with a topology such that the multiplication is
jointly continuous. If G is a paratopological group and the inverse operation of G is continuous, then G is
called a topological group.

A space X is called submetrizable if there exists a continuous bijection from X onto a metrizable
space. It is known that every Hausdorff topological group G of countable pseudocharacter is submetrizable
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[4, Lemma 6.10.7]. Unlike topological groups, Hausdorff paratopological groups of countable pseudochar-
acter may fail to be submetrizable. This fact has recently been established by F. Lin and C. Liu in [9,
Example 3.3]. However, A.V. Arhangel’skǐı et al. in [1–3], investigated when a semitopological group (or
a paratopological group) is submetrizable (or admits a continuous bijection onto a Hausdorff space with a
countable base). Recently, L.-H. Xie and S. Lin [17] discussed submetrizability in paratopological groups.

It is an old problem posed by A.V. Arhangel’skǐı to find an upper bound for cardinalities of reg-
ular Lindelöf spaces of countable pseudocharacter. In topological groups and paratopological groups,
A.V. Arhangel’skǐı’s problem has a relatively simple solution. Sanchis and Tkachenko [11, Theorem 2.26]
proved that every Hausdorff paratopological group G with l(G) ·ψ(G) ≤ ω has cardinality less than or equal
to 2ω. In an attempt to supplement the above theorem, the following questions were posed by Tkachenko:

Question 1.1. ([15, Problem 6.17]) Does every Hausdorff (or regular) semitopological group G with l(G) ·
ψ(G) ≤ ω satisfy |G| ≤ 2ω?

Question 1.2. ([15, Problem 6.18]) Does a Hausdorff or regular paratopological group G with l(G) ·ψ(G) ≤ ω

admit a continuous bijection onto a Hausdorff space with a countable base?

In this paper, we mainly discuss submetrizability in semitopological groups. Question 1.1 is partially
solved and we also give a positive answer to Question 1.2. We establish that: (1) every paracompact
semitopological group G with Hs(G) · ψ(G) ≤ ω is submetrizable (see Theorem 2.2); (2) every Hausdorff
semitopological group G with Hs(G) · Inr(G) · ψ(G) ≤ ω admits a continuous bijection onto a Hausdorff
space with a countable base, in particular, |G| ≤ 2ω; in addition, the diagonal of G is a Gδ-set in G × G

(see Theorem 2.7); (3) every Tychonoff semitopological group G with Hs(G) · Inr(G) · ψ(G) ≤ ω admits a
weaker separable metrizable topology (see Theorem 2.13). Some results in [1,9,17] are improved.

All spaces in this paper satisfy the T1 separation axiom. Below w(X), l(X), ψ(X) and πχ(X) denote the
weight, Lindelöf degree, pseudocharacter and π-character of a space X defined, respectively, as follows:

weight: w(X) = min{|U| : U is a base for X} + ω;
Lindelöf degree: l(X) = min{λ ∈ Card : for every open cover V of X there is a subfamily U ⊂ V
such that |U| ≤ λ and

⋃
U = X} + ω;

pseudocharacter: ψ(X) = sup{min{|U| : U is a family of open subsets of X such that
⋂

U = {x}} :
x ∈ X} + ω;
π-character: πχ(G) = sup{min{|B| : B is a π-base at x} : x ∈ X} + ω.

The reader can consult [4] and [5] for notation and terminology not given here.

2. Main results

Recall that for a Hausdorff semitopological group G with identity e the Hausdorff number [14] of G,
denoted by Hs(G), is the minimum cardinal number κ such that for every neighborhood U of e in G, there
exists a family γ of neighborhoods of e such that

⋂
V ∈γ V V −1 ⊂ U and |γ| ≤ κ.

Let X be a space. Then Δ = {(x, x) : x ∈ X} is a diagonal in X × X. Δ(X) = min{|U| : U
is a family of open subsets of X2 such that

⋂
U = Δ} + ω. If Δ(X) ≤ ω for a space X, then X has a

Gδ-diagonal.

Proposition 2.1. Δ(G) ≤ Hs(G) · ψ(G) for every Hausdorff semitopological group G.

Proof. Let Hs(G) ·ψ(G) ≤ α. Suppose that e is the neutral element in G and that {e} =
⋂

γ∈α Uγ , where Uγ

is an open set in G for each γ ∈ α. Since Hs(G) ≤ α, there is a family Λγ of open neighborhoods of e such
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that
⋂

V ∈Λγ
V V −1 ⊂ Uγ and |Λγ | ≤ α for each Uγ . We put Λ =

⋃
γ∈α Λγ . Clearly, we have |Λ| ≤ α. One

can easily obtain {e} =
⋂

V ∈Λ V V −1. We put UV =
⋃

x∈G V x × V x. Then Δ =
⋂

V ∈Λ UV , where Δ is the
diagonal of G×G. Indeed, assume the contrary. Then there exist distinct a, b in G such that (a, b) ∈ UV for
each V ∈ Λ. We put y = ab−1. Then y �= e and, for V ∈ Λ, there exists x ∈ G such that (a, b) ∈ V x× V x.
It follows that y = ab−1 ∈ V x(V x)−1 = V V −1. Hence y ∈

⋂
V ∈Λ V V −1 = {e}, which contradicts y �= e. �

It is known that every Hausdorff paracompact space with a Gδ-diagonal is submetrizable (see [6, Corol-
lary 2.9]). By Proposition 2.1, we have the following theorem.

Theorem 2.2. Every Hausdorff paracompact semitopological group G with Hs(G) ·ψ(G) ≤ ω is submetrizable.

A subset U of a space X is called regular open if U = Int(U). Similarly, a subset F of a space X is called
regular closed if F = Int(F ). Given a space (X, τ), denote by τ ′ the topology on X whose base consists
of regular open subsets of (X, τ). The space (X, τ ′) is said to be the semiregularization of (X, τ) and is
denoted by Xsr . It is easy to see that τ ′ ⊂ τ and that the spaces (X, τ) and (X, τ ′) have the same regular
open and regular closed subsets. The operation of semiregularization was defined by M. Stone in [13] and
studied by M. Katetov [8].

Now we give a positive answer to Question 1.2 and show even more:

Corollary 2.3. Every Hausdorff paratopological group G with l(G) · ψ(G) ≤ ω admits a weaker separable
metrizable topology.

Proof. Let Gsr be the semiregularization of G. Since G is Hausdorff, it follows from [10, Example 1.9] that
Gsr is a regular paratopological group. Hence, it is enough to show that Gsr admits a weaker separable
metrizable topology. One can easily verify that l(Gsr) · ψ(Gsr) ≤ ω. Hence, from [14, Proposition 2.4] it
follows that Hs(Gsr) · ψ(Gsr) ≤ l(Gsr) · ψ(Gsr) ≤ ω. Clearly, Gsr is paracompact, since Gsr is a Lindelöf
space. By Theorem 2.2, Gsr is submetrizable. Let G′

sr be Gsr with a weaker metrizable topology. Then the
identity map i : Gsr → G′

sr is continuous. Hence, G′
sr is Lindelöf as a continuous image of Gsr . Since G′

sr
is metrizable, G′

sr is a separable metrizable space. �
The second result in Proposition 2.4 improves [14, Proposition 2.2].

Proposition 2.4. Let G be a Hausdorff semitopological group. Then

(1) ψ(G) ≤ πχ(G);
(2) Hs(G) ≤ πχ(G).

Proof. Let γ be a π-base at the neutral element e in G.
(1) We shall show that {e} =

⋂
V ∈γ V V −1, which implies that ψ(G) ≤ πχ(G). Indeed, for any y �= e,

there are two disjoint open sets W1 and W2 in G such that e ∈ W1 and y ∈ W2. Since G is a semitopological
group, there is an open set U containing e such that U ⊂ W1 and yU ⊂ W2. From the fact that γ is a
π-base at e it follows that there is an open set V ∈ γ such that V ⊂ U . One can easily verify that y /∈ V V −1

and e ∈ V V −1. Indeed, since yU ∩ U = ∅, we have y /∈ UU−1 ⊃ V V −1. This implies that ψ(G) ≤ |γ|, as
required.

(2) For each V ∈ γ, fix a point bV ∈ V . Clearly, V b−1
V is an open set containing e. For any open set

U containing e, we shall show that
⋂

V ∈γ(V b−1
V )(V b−1

V )−1 ⊂ U , which implies that Hs(G) ≤ |γ|. Indeed,⋂
V ∈γ(V b−1

V )(V b−1
V )−1 =

⋂
V ∈γ V b−1

V bV V
−1 =

⋂
V ∈γ V V −1 = {e} ⊂ U , as required. �
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Corollary 2.5. ([3, Theorem 2.6]) Every paracompact semitopological group G of countable π-character is
submetrizable.

Proof. The statement directly follows from Theorem 2.2 and Proposition 2.4. �
According to Propositions 2.1 and 2.4, we have the following:

Corollary 2.6. Δ(G) ≤ πχ(G) for every Hausdorff semitopological group G.

Let τ be an infinite cardinal and G a semitopological group. Then G is called left (resp. right) τ -narrow
[11] if, for every neighborhood U of the identity in G, there exists a subset K ⊂ G with |K| ≤ τ such that
KU = G (resp. KU = G). The left index of narrowness Inl(G) and the right index of narrowness Inr(G) of
G are defined as the minimal cardinals τ ≥ ω such that G is left τ -narrow and right τ -narrow, respectively.

Theorem 2.7. Every Hausdorff semitopological group G with Hs(G) · Inr(G) ·ψ(G) ≤ ω admits a continuous
bijection onto a Hausdorff space with a countable base, in particular, |G| ≤ 2ω. In addition, the diagonal of
G is a Gδ-set in G×G.

Proof. Suppose that e is the neutral element in G and that {e} =
⋂

n∈ω Un, where Un is an open set
in G for each n ∈ ω. Since Hs(G) ≤ ω, there is a countable family γn of open neighborhoods of e such
that

⋂
V ∈γn

V V −1 ⊂ Un for each Un. We put γ =
⋃

n∈ω γn. Then, obviously, {e} =
⋂

V ∈γ V V −1. Since
Inr(G) ≤ ω, for each V ∈ γ one can find a countable subset HV in G such that V HV = G. We put
MV = HV ∪H−1

V , M =
⋃

V ∈γ MV and H =
⋃

n∈N Mn. Then H is a countable subgroup in G.

Claim 1. b−1V ∩H �= ∅ for each b ∈ G and V ∈ γ.

Since b−1V H = b−1G = G, we have b−1V H ∩H �= ∅. Thus, there exist h1, h2 ∈ H and y ∈ V such that
b−1yh1 = h2. That is, b−1y = h2h

−1
1 ∈ H. This completes the proof of Claim 1.

We put ζ = {V h−1 : h ∈ H,V ∈ γ} ∪ {G \ V h−1 : h ∈ H,V ∈ γ}.

Claim 2. For any two distinct points a, b in G, there are disjoint W1 ∈ ζ and W2 ∈ ζ such that a ∈ W1 and
b ∈ W2.

Since ab−1 �= e, there is V ∈ γ such that ab−1 /∈ V V −1. Thus one can easily obtain ab−1V ∩ V = ∅.
By Claim 1, one can choose d ∈ b−1V ∩H. Then ad /∈ V . Hence, a /∈ V d−1, that is, a ∈ G \ V d−1. We

put W1 = G \ V d−1.
From d ∈ b−1V it follows that bd ∈ V , that is, b ∈ V d−1. We put W2 = V d−1. Clearly, W1 and W2 are

both in ζ, W1 ∩W2 = ∅ and a ∈ W1, b ∈ W2. This proves Claim 2.
Now we can use the countable family ζ as a subbase for a new topology τ on G; this topology is, clearly,

Hausdorff, and is contained in the original topology of G. The identity map i : G → Gτ is a continuous
bijection, where Gτ is G with the topology τ .

Since |X| ≤ 2w(X) for each T0 space X (see [7, Theorem 3.1]), |G| = |Gτ | ≤ 2ω.
From Proposition 2.1 it follows that the diagonal of G is a Gδ-set in G×G. �
A space X is said to have a regular Gδ-diagonal if the diagonal Δ = {(x, x) : x ∈ X} can be represented

as the intersection of the closures of a countable family of open neighborhoods of Δ in X ×X. Obviously,
any submetrizable space has a regular Gδ-diagonal. Every space with a regular Gδ-diagonal is Hausdorff.
Indeed, according to Zenor [18], a space X has a regular Gδ-diagonal if and only if there exists a sequence
{Vn : n ∈ ω} of open covers of X with the following property:
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(∗) For any two distinct points x and y in X, there are open neighborhoods Ox and Oy of x and y,
respectively, and k ∈ ω such that no element of V intersects both Ox and Oy.

Remark 2.8. (1) One can replace the condition ‘Hs(G) · Inr(G) · ψ(G) ≤ ω’ by ‘Hs(G) · Inl(G) · ψ(G) ≤ ω’
in Theorem 2.7;

(2) According to the proof of Theorem 2.7, one can easily obtain that every Hausdorff semitopological
group G admits a continuous bijection onto a Hausdorff space X with w(X) ≤ Hs(G) · Inr(G) · ψ(G), in
particular, |G| ≤ 2Hs(G)·Inr(G)·ψ(G). It is worth mentioning that I. Sánchez [12] independently proved that
|G| ≤ 2Hs(G)·Inr(G)·ψ(G) for every Hausdorff semitopological group G.

(3) In view of Theorem 2.7, it is natural to ask whether every Hausdorff space with a countable base has
a Gδ-diagonal. We do not known the answer to this question. However, there exists a nonsubmetrizable and
second-countable Hausdorff space with a Gδ-diagonal.

Let X = R+ ∪ {a} ∪ {b}, where R+ = [0,+∞) and a, b are two distinct points not in R+. We topologize
X as follows: R+ has the usual topology and is an open subspace of X; a basic neighborhood of a ∈ X has
the form

Oj(a) = {a} ∪
∞⋃
i=j

(2i, 2i + 1), where j ∈ ω;

a basic neighborhood of b ∈ X has the form

Ok(b) = {b} ∪
∞⋃
i=k

(2i− 1, 2i), where k ∈ ω.

Viglino [16] showed that the space X is Hausdorff. It is clear that X is second-countable. We put Un =
{On(a)} ∪ {On(b)} ∪ {B1/n(x) : x ∈ R+}, where B1/n(x) = {y : |y − x| < 1/n}. Then {Un : n ∈ ω} is a
Gδ-diagonal sequence for X. We claim that X does not have a regular Gδ-diagonal, which shows that X is
not submetrizable. Indeed, let {Vn : n ∈ ω} be a sequence of open covers of X. We take two neighborhoods
Oj(a) and Ok(b) of a and b, respectively. Then there exists an integer m > max{j, k}. For every n ∈ ω and
Un(m) ∈ Vn with k ∈ Un(m), Un(m) intersects both Oj(a) and Ok(b), which shows that X does not have
a regular Gδ-diagonal.

The following result gives a partial answer to Question 1.1 and even more:

Corollary 2.9. Every Hausdorff (resp. regular) semitopological group G with Hs(G) · l(G) ·ψ(G) ≤ ω admits
a continuous bijection onto a Hausdorff (resp. regular) space with a countable base, in particular, |G| ≤ 2ω.

Proof. By Theorem 2.7, clearly, we have |G| ≤ 2ω.
When the semitopological group G satisfies the Hausdorff separation axiom, the statement directly follows

from Theorem 2.7.
Suppose that G is regular. From Theorem 2.7 it follows that G has a Gδ-diagonal. Hence, from the fact

that every paracompact space with a Gδ-diagonal is submetrizable [6, Corollary 2.9] it follows that G is a
submetrizable space, since every regular Lindelöf space is paracompact. Suppose that G′ is G with a weaker
metrizable topology. Then the identity i : G → G′ is continuous. Since every continuous image of a Lindelöf
space is Lindelöf, G′ is a Lindelöf metrizable space. Hence, G′ is a metrizable space with a countable base.
This completes the proof. �

The following result gives another partial answer to Question 1.1.
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Corollary 2.10. Every Hausdorff (resp. regular) semitopological group G with l(G) · πχ(G) ≤ ω admits a
continuous bijection onto a Hausdorff (resp. regular) space with a countable base, in particular, |G| ≤ 2ω.

Proof. This follows from Proposition 2.4 and Corollary 2.9. �
Corollary 2.11. ([11, Theorem 2.26]) Every Hausdorff paratopological group G with l(G) · ψ(G) ≤ ω has
cardinality less than or equal to 2ω. In addition, the diagonal of G is a Gδ-set in G×G.

Proof. It is well known that Hs(G) ≤ l(G) for every Hausdorff paratopological group G [14, Proposition 2.4].
Clearly, Inr(G) ≤ l(G). Hence, the statement directly follows from Theorem 2.7. �

F. Lin and C. Liu [9, Theorem 3.6] proved that every regular ω-narrow first-countable paratopological
group G admits a continuous bijection onto a Hausdorff space with a countable base. Recently, L.-H. Xie
and S. Lin [17, Proposition 2.2] weakened ‘regular’ to ‘Hausdorff’. The following result generalizes this result
to the class of semitopological group.

Corollary 2.12. Every Hausdorff left (right) ω-narrow semitopological group G with countable π-character
admits a continuous bijection onto a Hausdorff space with a countable base.

Proof. This follows from Proposition 2.4 and Theorem 2.7. �
A result similar to Theorem 2.7 holds in the class of Tychonoff spaces.

Theorem 2.13. Every Tychonoff semitopological group G with Hs(G) · Inr(G) · ψ(G) ≤ ω admits a weaker
separable metrizable topology.

Proof. The proof is very close to the proof of Theorem 2.7. Since the space G is Tychonoff, all elements
of γ in the proof of Theorem 2.7 can be chosen to be cozero-sets. Since translations are homeomorphisms,
all elements of the family ζ1 = {V h−1 : h ∈ H,V ∈ γ} are also cozero-sets. Therefore, for every W ∈ ζ1,
we can fix a continuous function fW : G → R such that W = f−1

W (R \ {0}). Then F = {fW : W ∈ ζ1}
is a countable family of continuous functions on G separating points of G (see the proof of Theorem 2.7).
Hence, the diagonal product of functions in F is a one-to-one continuous mapping of G onto a separable
metrizable space. �

Clearly, one can replace the condition ‘Hs(G) · Inr(G) · ψ(G) ≤ ω’ by ‘Hs(G) · Inl(G) · ψ(G) ≤ ω’ in
Theorem 2.13. Hence, according to Proposition 2.4 and Theorem 2.13, we have the following:

Corollary 2.14. ([1, Theorem 2.4]) Every Tychonoff left ω-narrow semitopological group of countable
π-character admits a weaker separable metrizable topology.
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[1] A.V. Arhangel’skǐı, A. Bella, The diagonal of a first countable paratopological group, submetrizability, and related results,
Appl. Gen. Topol. 8 (2) (2007) 207–212.
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