Filomat 27:6 (2013), 949–954 DOI 10.2298/FIL1306949L Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Quasi-metrizability of bispaces by weak bases

Kedian Li^a, Shou Lin^b

^aDepartment of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, P. R. China ^bDepartment of Mathematics, Ningde Normal University, Ningde 352100, P. R. China

Abstract. In this paper, some characterizations for the quasi-metrizability of bispaces are given by means of pairwise weak base *g*-functions, which generalizes some metrization theorems for topological spaces.

1. Introduction

Kelly [7] began first systematic discussions of bitopological spaces, and then obtained necessary and sufficient conditions that characterize the quasi-pseudo-metrizability of bispaces, see [15, 17–21]. Recently Marín [12] studied the quasi-pseudo-metrization theorem in the style of Frink's metrization theorem by weak bases, and generalization of the Fox-Künzi theorem [16] and the bitopological extension of the "double sequence" theorem of Nagata [17]. The notion of weak bases was introduced by Arhangel'skiï [1] to study symmetrizable spaces. Nagata [14] introduced g-functions and studied systematically the metrizability of spaces by means of g-functions. Gao [4] introduced weak base g-functions by means of weak bases to study metrizability of topological spaces. The authors of [9] presented some criteria for the quasi-pseudo-metrizability of bitopological spaces in terms of pairwise weak developments and pairwise weak base g-functions. Pairwise weak base g-functions are a powerful tool for studying the quasi-pseudo-metrizability of bitopological spaces. In this paper, we shall continue this approach. Some quasi-metrization theorems of bispaces will be given by means of pairwise weak base g-functions.

First, let us list some concepts and notations used in this paper. \mathbb{N} denotes the set of all positive integers. A bispace (a bitopological space in [7]) is a triple (X, τ_i, τ_j) where X is a nonempty set, and τ_i and τ_j are two topologies on X, i, j = 1, 2 and $i \neq j$. For $A \subset X$, $cl_{\tau_i}A$ denotes the closure of a set A in a topological space (X, τ_i) , and "a sequence $\{y_n\}$ τ_i -converges to x" denotes "a sequence $\{y_n\}$ converges to x in a topological space (X, τ_i)". All spaces (X, τ_i) in this paper are assumed to be T_0 . Undefined terms are given in [3].

Definition 1.1. Let (X, τ) be a topological space. A family \mathcal{B} of subsets of X is a *weak base* [1] for the topology τ if for each $x \in X$ there is a subfamily \mathcal{B}_x of \mathcal{B} such that

(a) $x \in B$ for each $B \in \mathcal{B}_x$;

(b) if $A, B \in \mathcal{B}_x$, there is a $C \in \mathcal{B}_x$ such that $C \subset A \cap B$;

(c) a subset $U \subset X$ is open if and only if for each $x \in U$ there exists a $B \in \mathcal{B}_x$ such that $B \subset U$.

Keywords. Quasi-metrization, bispaces, weak bases, pairwise weak base g-functions

Received: 03 June 2012; Revised: 22 January 2013; Accepted: 23 January 2013 Communicated by Ljubiša D.R. Kočinac

Corresponding author: Shou Lin

²⁰¹⁰ Mathematics Subject Classification. Primary 54E35; Secondary 54E20, 54E55, 54E99

The project is supported by the NNSF (No. 10971186, 11171162, 11201414) of China; Fujian Province Support College Research Plan Project (No. JK2011031)

Email addresses: likd56@126.com (Kedian Li), shoulin60@163.com (Shou Lin)

The family \mathcal{B}_x is called a *local weak base* at *x* in *X*.

A topological space (X, τ) is said to have a *weak base g-function* [4], if there is a function $g : \mathbb{N} \times X \to \mathcal{P}(X)$ such that for each $x \in X$ and $n \in \mathbb{N}$

(a) $x \in g(n, x);$

(b) $g(n + 1, x) \subset g(n, x);$

(c) $\{g(n, x) : n \in \mathbb{N}\}$ is a local weak base at x in X.

Let us recall that a function $d : X \times X \to \mathbb{R}^+$ is a *quasi-pseudo-metric* (resp. *quasi-metric*) on a set X if for all $x, y, z \in X$, it satisfies that

(a) d(x, x) = 0 (resp. d(x, y) = 0 if and only if x = y); (b) $d(x, z) \le d(x, y) + d(y, z)$.

If *d* is a quasi-pseudo-metric on *X*, the function d^{-1} defined by $d^{-1}(x, y) = d(y, x)$ is called the *conjugate quasi-pseudo-metric* of *d* on *X*. Each quasi-pseudo-metric *d* on a set *X* induces a topology $\tau(d)$ on *X*, where for all $x \in X$ and all r > 0,

$$B_d(x, r) = \{y \in X : d(x, y) < r\}$$

is an open *d*-ball and the family { $B_d(x, r) : x \in X, r > 0$ } of open *d*-balls is a base for the topology $\tau(d)$. A bispace (X, τ_i, τ_j) is *quasi-pseudo-metrizable* (resp. *quasi-metrizable*) if there exists a quasi-pseudo-metric (resp. quasi-metric) *d* on *X* such that $\tau(d) = \tau_i$ and $\tau(d^{-1}) = \tau_j$ (or $\tau(d) = \tau_j$ and $\tau(d^{-1}) = \tau_i$), *i*, *j* = 1, 2 and $i \neq j$. It is easy to check that a space is T_0 and quasi-pseudo-metrizable if and only if it is quasi-metrizable.

A pair cover [12] in a bispace (X, τ_i, τ_j) is a family of pairs $(\mathcal{G}_i, \mathcal{G}_j) = \{(G_{i,\alpha}, G_{j,\alpha}) : \alpha \in I\}$ such that

(i) $\mathcal{G}_i = \{G_{i,\alpha} : \alpha \in I\}$ is a cover of X for i = 1, 2;

(ii) for each $x \in X$ there is an $\alpha \in I$ such that $x \in G_{1,\alpha} \cap G_{2,\alpha}$.

Let $(\mathcal{G}_i, \mathcal{G}_j)$ and $(\mathcal{G}'_i, \mathcal{G}'_j)$ be pair covers of a bispaces (X, τ_i, τ_j) . We say that $(\mathcal{G}'_i, \mathcal{G}'_j)$ refines $(\mathcal{G}_i, \mathcal{G}_j)$, i.e., $(\mathcal{G}'_i, \mathcal{G}'_j) < (\mathcal{G}_i, \mathcal{G}_j)$ if for each pair $(G'_{i,\alpha}, G'_{j,\alpha}) \in (\mathcal{G}'_i, \mathcal{G}'_j)$ there is a pair $(G_{i,\beta}, G_{j,\beta}) \in (\mathcal{G}_i, \mathcal{G}_j)$ such that $G'_{i,\alpha} \subset G_{i,\beta}$ and $G'_{i,\alpha} \subset G_{j,\beta}$ for i, j = 1, 2 and $i \neq j$.

Let $(\mathcal{G}_i, \mathcal{G}_j)$ be a pair cover of a bispace (X, τ_i, τ_j) . Let *A* be a nonempty subset of *X*. For *i*, *j* = 1, 2 and $i \neq j$, put

$$\operatorname{st}(A, \mathcal{G}_i, \mathcal{G}_j) = \bigcup \{G_{i,\alpha} \in \mathcal{G}_i : A \cap G_{j,\alpha} \neq \emptyset\}.$$

If $x \in X$, define

$$\operatorname{st}(x, \mathcal{G}_i, \mathcal{G}_j) = \bigcup \{G_{i,\alpha} \in \mathcal{G}_i : x \in G_{j,\alpha}\}$$

and

$$\operatorname{st}^2(x, \mathcal{G}_i, \mathcal{G}_j) = \operatorname{st}(\operatorname{st}(x, \mathcal{G}_i, \mathcal{G}_j), \mathcal{G}_i, \mathcal{G}_j)$$

Definition 1.2. ([9]) A *pairwise weak development* in a bispace (X, τ_i, τ_j) is a sequence $\{(\mathcal{G}_{i,n}, \mathcal{G}_{j,n}) : n \in \mathbb{N}\}$ of pair covers of *X* such that for each $x \in X$ $\{st(x, \mathcal{G}_{i,n}, \mathcal{G}_{j,n}) : n \in \mathbb{N}\}$ is a weak base of τ_i -neighborhoods of *x* in *X*.

A bispace (X, τ_i, τ_j) is *pairwise weak developable* if it has a pairwise weak development $\{(\mathcal{G}_{i,n}, \mathcal{G}_{j,n}) : n \in \mathbb{N}\}$ such that $(\mathcal{G}_{i,n+1}, \mathcal{G}_{j,n+1}) < (\mathcal{G}_{i,n}, \mathcal{G}_{j,n})$ for each $n \in \mathbb{N}$.

A bispace (X, τ_i, τ_j) is said to have a *pairwise weak base g-function* if there are functions $g_i, g_j : \mathbb{N} \times X \rightarrow \mathcal{P}(X)$ (i = 1, 2) such that for i, j = 1, 2 and $i \neq j$

(a) $x \in g_i(n, x) \cap g_i(n, x)$ for all $x \in X$ and $n \in \mathbb{N}$;

(b) $g_i(n+1,x) \subset g_i(n,x)$ and $g_j(n+1,x) \subset g_j(n,x)$ for all $n \in \mathbb{N}$;

(c) $\{g_i(n, x) : n \in \mathbb{N}, x \in X\}$ is a weak base for the space (X, τ_i) , and $\{g_j(n, x) : n \in \mathbb{N}, x \in X\}$ is a weak base for the space (X, τ_i) .

Let (g_i, g_j) be a pairwise weak base *g*-function for a bispace (X, τ_i, τ_j) and $k \in \mathbb{N}$. Define

$$g_i^1(n, x) = g_i(n, x)$$
 and $g_i^{k+1}(n, x) = \bigcup \{g_i^k(n, y) : y \in g_i(n, x)\}.$

It is easy to verify that $g_i^{k+1}(n, x) = \bigcup \{g_i(n, y) : y \in g_i^k(n, x)\}$ by inductions on $k \in \mathbb{N}$.

950

2. Main results

Lemma 2.1. ([9]) A T_1 -bispace (X, τ_i, τ_j) is quasi-metrizable if and only if it has a pairwise weak development $\{(\mathcal{G}_{i,n}, \mathcal{G}_{j,n}) : n \in \mathbb{N}\}$ such that $\{st^2(x, \mathcal{G}_{i,n}, \mathcal{G}_{j,n}) : n \in \mathbb{N}, x \in X\}$ is a weak base for a space (X, τ_i) , i, j = 1, 2 and $i \neq j$.

Theorem 2.2. For a T_1 -bispace (X, τ_i, τ_j) the following are equivalent:

(1) (X, τ_i, τ_j) is quasi-metrizable;

(2) There is a pairwise weak base g-function (g_i, g_j) for (X, τ_i, τ_j) such that if a sequence $\{y_n\} \tau_i$ -converges to x and $g_j(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\} \tau_i$ -converges to x;

(3) There is a pairwise weak base g-function (g_i, g_j) for (X, τ_i, τ_j) such that

(3.1) If a sequence $\{y_n\}$ τ_i -converges to x and $x_n \in g_i(n, y_n)$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ τ_i -converges to x.

(3.2) If a sequence $\{y_n\}$ τ_i -converges to x and $y_n \in g_i(n, x_n)$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ τ_i -converges to x.

(4) There is a pairwise weak base g-function (g_i, g_j) for (X, τ_i, τ_j) such that if $x \in g_j(n, z_n)$, $g_i(n, z_n) \cap g_j(n, y_n) \neq \emptyset$ and $x_n \in g_i(n, y_n)$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\} \tau_i$ -converges to x.

Proof. (1) \Rightarrow (2) Suppose that (X, τ_i, τ_j) is quasi-metrizable. For each r > 0, i, j = 1, 2 and $i \neq j$, put

$$B_i(x,r) = \{y \in X : d(x,y) < r\}, B_j(x,r) = \{y \in X : d(y,x) < r\}$$

and for each $x \in X$ and $n \in \mathbb{N}$, let

$$g_i(n, x) = B_i(x, \frac{1}{2^n}), g_j(n, x) = B_j(x, \frac{1}{2^n}).$$

Then (g_i, g_j) is a pairwise weak base g-function for (X, τ_i, τ_j) satisfying the condition (2). In fact, if a sequence $\{y_n\}$ τ_i -converges to x and $g_j(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, let U be a τ_i -neighborhood of x in X, then there exists an $k \in \mathbb{N}$ such that $g_i(k, x) = B_i(x, \frac{1}{2^k}) \subset U$. Since each $B_i(x, r)$ is open in (X, τ_i) and the sequence $\{y_n\}$ τ_i -converges to x, then $\{y_n : n > m\} \subset g_i(3k, x)$ for some $m \in \mathbb{N}$. Let $n_0 = \max\{3k, 3m\}$. We can choose $t_n \in g_j(n, x_n) \cap g_i(n, y_n)$ for each $n > n_0$ by $g_j(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$. Thus

$$d(x, x_n) \leq d(x, y_n) + d(y_n, t_n) + d(t_n, x_n) \leq \frac{1}{2^{3k}} + \frac{1}{2^n} + \frac{1}{2^n} < \frac{1}{2^k}.$$

That is $x_n \in U$ for each $n > n_0$, therefore the sequence $\{x_n\}$ τ_i -converges to x.

(2) \Rightarrow (3) Let (g_i, g_j) be a pairwise weak base *g*-function satisfying the condition (2). Suppose that a sequence $\{y_n\}$ τ_i -converges to *x* and $x_n \in g_i(n, y_n)$ for all $n \in \mathbb{N}$. Then $x_n \in g_j(n, x_n) \cap g_i(n, y_n)$, thus the sequence $\{x_n\}$ τ_i -converges to *x*, and (3.1) holds. By a similar proof, (3.2) holds.

(3) \Rightarrow (4) Let (g_i, g_j) be a pairwise weak base *g*-function satisfying the condition (3). Suppose that $x \in g_j(n, z_n), g_i(n, z_n) \cap g_j(n, y_n) \neq \emptyset$ and $x_n \in g_i(n, y_n)$ for all $n \in \mathbb{N}$. Since $x \in g_j(n, z_n)$, then the sequence $\{z_n\}$ τ_i -converges to *x* by (3.2). Take $t_n \in g_i(n, z_n) \cap g_j(n, y_n)$ for all $n \in \mathbb{N}$, then the sequence $\{t_n\}$ τ_i -converges to *x* by (3.1), and the sequence $\{y_n\}$ τ_i -converges to *x* by (3.2). Since $x_n \in g_i(n, y_n)$ and the sequence $\{y_n\}$ τ_i -converges to *x* by (3.1).

(4) \Rightarrow (1) Let (g_i, g_j) be a pairwise weak base *g*-function satisfying the condition (4). For i = 1, 2 and $n \in \mathbb{N}$, let

$$\mathcal{G}_{i,n} = \{ g_i(n, x) : x \in X \}.$$

Then $(\mathcal{G}_{i,n+1}, \mathcal{G}_{j,n+1}) < (\mathcal{G}_{i,n}, \mathcal{G}_{j,n})$ for each $n \in \mathbb{N}$. By Lemma 2.1, we only need to show that $\{st^2(x, \mathcal{G}_{i,n}, \mathcal{G}_{j,n}) : x \in X, n \in \mathbb{N}\}$ is a weak base for $(X, \tau_i), i, j = 1, 2$ and $i \neq j$.

Let $U \subset X$ in which for any $x \in U$ there is some $n \in \mathbb{N}$ such that $\operatorname{st}^2(x, \mathcal{G}_{i,n}, \mathcal{G}_{j,n}) \subset U$. Then $g_i(n, x) \subset U$. Since $\{g_i(n, x) : x \in X, n \in \mathbb{N}\}$ is a weak base for (X, τ_i) , thus U is τ_i -open. On the other hand, suppose U is τ_i -open and $x \in U$. We want to verify $\operatorname{st}^2(x, \mathcal{G}_{i,n}, \mathcal{G}_{j,n}) \subset U$ for some $m \in \mathbb{N}$. If not, take $x_n \in \operatorname{st}^2(x, \mathcal{G}_{i,n}, \mathcal{G}_{j,n}) - U$ for each $n \in \mathbb{N}$. Also, we can get $y_n \in X$ such that $x_n \in g_i(n, y_n)$ with $g_j(n, y_n) \cap \operatorname{st}(x, \mathcal{G}_{i,n}, \mathcal{G}_{j,n}) \neq \emptyset$, and thus there exist $z_n, s_n \in X$ with $s_n \in g_i(n, z_n) \cap g_j(n, y_n)$ and $x \in g_j(n, z_n)$. Then the sequence $\{x_n\}$ τ_i -converges to x by (4). This is a contradiction.

Hence, (X, τ_i, τ_j) is quasi-metrizable by Lemma 2.1. \Box

Lemma 2.3. ([11]) Let $\mathcal{B}_i = \bigcup \{ \mathcal{B}(i, x) : x \in X \}$ be a weak base for a T_2 -space (X, τ_i) . For each $x \in X$ and $B \in \mathcal{B}(i, x)$, *if a sequence* $\{x_n\} \tau_i$ -converges to x, then $\{x_n : n > m\} \subset B$ for some $m \in \mathbb{N}$.

Theorem 2.4. For a T_2 -bispace (X, τ_i, τ_j) the following are equivalent:

(1) (X, τ_i, τ_i) is quasi-metrizable;

(2) There is a pairwise weak base g-function (g_i, g_j) for (X, τ_i, τ_j) such that if $y_n \in g_i(n, x)$ and $g_j(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\} \tau_i$ -converges to x;

(3) There is a pairwise weak base g-function (g_i, g_j) for (X, τ_i, τ_j) such that if $g_i(n, x) \cap g_j(n, y_n) \neq \emptyset$ and $g_i(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\} \tau_i$ -converges to x;

(4) There is a pairwise weak base g-function (g_i, g_j) for (X, τ_i, τ_j) such that if $g_i(n, x) \cap g_j(n, y_n) \neq \emptyset$ and $x_n \in g_i(n, y_n)$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\} \tau_i$ -converges to x.

Proof. (1) \Rightarrow (2) Since (X, τ_i, τ_j) is quasi-metrizable, there is a pairwise weak base *g*-function (g_i, g_j) for (X, τ_i, τ_j) satisfying the condition (2) in Theorem 2.2. Suppose that $y_n \in g_i(n, x)$ and $g_j(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$. Since $\{g_i(n, x) : n \in \mathbb{N}\}$ is a local weak base at *x* for the space (X, τ_i) , the sequence $\{y_n\}$ τ_i -converges to *x* by $y_n \in g_i(n, x)$. Then the sequence $\{x_n\} \tau_i$ -converges to *x* by $g_j(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ and (2) in Theorem 2.2.

(2) \Rightarrow (3) Let (g_i, g_j) be a pairwise weak base *g*-function satisfying the condition (2). Suppose that $g_i(n, x) \cap g_j(n, y_n) \neq \emptyset$ and $g_j(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$. If the sequence $\{x_n\}$ does not τ_i -converge to x, then there are a neighborhood U of x in X and a subsequence $\{x_{n_l}\}$ of $\{x_n\}$ such that $x_{n_l} \notin U$ for all $l \in \mathbb{N}$. Take $z_l \in g_i(n_l, x) \cap g_j(n_l, y_{n_l})$ for all $l \in \mathbb{N}$. Since $z_l \in g_i(n_l, x) \subset g_i(l, x)$ and $z_l \in g_j(n_l, y_{n_l}) \cap g_i(l, z_l) \subset g_j(l, y_{n_l}) \cap g_i(l, z_l)$, the sequence $\{y_{n_l}\}$ τ_i -converges to x by (2). By Lemma 2.3, there is a subsequence $\{y_{n_l_k}\}$ of $\{y_{n_l_k}\}$ such that $y_{n_{l_k}} \in g_i(k, x)$ for all $k \in \mathbb{N}$. Since $g_j(k, x_{n_{l_k}}) \cap g_i(k, y_{n_{l_k}}) \supset g_j(n_{l_k}, x_{n_{l_k}}) \cap g_i(n_{l_k}, y_{n_{l_k}}) \neq \emptyset$, the subsequence $\{x_{n_l_k_k_l_k_{l_k_k_{l_k}}\}$ or overges to x by (2). That is a contradiction with $x_{n_{l_k_k_{l_k_{l_k}}} \notin U$ for all $k \in \mathbb{N}$. Thus the sequence $\{x_n\}$ τ_i -converges to x.

 $(3) \Rightarrow (4)$ Obviously.

(4) \Rightarrow (1) Let (g_i, g_j) be a pairwise weak base *g*-function satisfying the condition (4). It is enough to show the (g_i, g_j) satisfies the condition (4) in Theorem 2.2. Suppose that $x \in g_j(n, z_n), g_i(n, z_n) \cap g_j(n, y_n) \neq \emptyset$ and $x_n \in g_i(n, y_n)$ for all $n \in \mathbb{N}$. Take $t_n \in g_i(n, z_n) \cap g_j(n, y_n)$ for each $n \in \mathbb{N}$. Then the sequence $\{t_n\}$ τ_i -converges to *x* by $g_i(n, x) \cap g_j(n, z_n) \neq \emptyset$ and (4). By Lemma 2.3, there exists a subsequence $\{t_{n_k}\}$ of $\{t_n\}$ with $t_{n_k} \in g_i(k, x)$ for all $k \in \mathbb{N}$. Then $t_{n_k} \in g_i(k, x) \cap g_j(n_k, y_{n_k}) \subset g_i(k, x) \cap g_j(k, y_{n_k})$ and $x_{n_k} \in g_i(n_k, y_{n_k}) \subset g_i(k, y_{n_k})$ for all $k \in \mathbb{N}$. Again, by (4), the sequence $\{x_{n_k}\}$ τ_i -converges to *x*. By a similar method in (2) \Rightarrow (3) above, the sequence $\{x_n\}$ τ_i -converges to *x*. \Box

Let $k \in \mathbb{N}$. Consider the following conditions about a pairwise weak base *g*-function (g_i, g_j) for a bispace (X, τ_i, τ_j) .

 $(p\sigma')$ If $x \in g_i^2(n, x_n)$ for all $n \in \mathbb{N}$, then $\{x_n\}$ τ_i -converges to x.

(*pN*') For any $A \subset X$ and each $n \in \mathbb{N}$, $cl_{\tau_i}A \subset \bigcup \{g_i(n, x) : x \in A\}$.

(pS') If $\{y_n\}$ τ_i -converges to x and $y_n \in g_i(n, x_n)$ for all $n \in \mathbb{N}$, then $\{x_n\}$ τ_i -converges to x.

Theorem 2.5. A T_2 -bispace (X, τ_i, τ_j) is quasi-metrizable if and only if it has a pairwise weak base g-function (g_i, g_j) satisfying $(p\sigma')$ and (pN').

Proof. Necessity. Let (X, τ_i, τ_j) be a quasi-pseudo-metrizable bispace. Let g_i, g_j be the functions defined by the proof of $(1) \Rightarrow (2)$ in Theorem 2.2.

First, $(p\sigma')$ holds. Let $x \in g_j^2(n, x_n)$ for all $n \in \mathbb{N}$, then $x \in g_j(n, t_n)$ and $t_n \in g_j(n, x_n)$. $\{t_n\}$ τ_i -converges to x by the condition (2) of Theorem 2.2. Again by the condition (2) of Theorem 2.2, then $\{x_n\}$ τ_i -converges to x.

Secondly, (pN') holds. Assume that there are a subset $A \subset X$ and an $m \in \mathbb{N}$ such that $cl_{\tau_i}A \notin \bigcup \{g_j(m, y) : y \in A\}$, then there exists a point $x \in cl_{\tau_i}A - \bigcup \{g_j(m, y) : y \in A\}$. Since (X, τ_i) is first-countable, there is a sequence $\{y_n\} \subset A$ such that $\{y_n\} \tau_i$ -converges to x. For $k \in \mathbb{N}$ and k > m, since $g_i(k, x)$ is open in (X, τ_i) , then $\{y_n : n > n_0\} \subset g_i(k, x)$ for some $n_0 \in \mathbb{N}$.

Because $x \notin \bigcup \{g_j(m, y) : y \in A\}$, then $x \notin g_j(m, y_n)$ for any $n \in \mathbb{N}$. Let k > m and $n > \max\{m, n_0\}$, then $y_n \in g_i(k, x)$ and $x \notin g_j(m, y_n)$. We have $d(x, y_n) < \frac{1}{2^k} < \frac{1}{2^m}$ and $d(x, y_n) \ge \frac{1}{2^m}$, this is a contradiction. Therefore, the condition (pN') holds.

Sufficiency. Let (g_i, g_j) be a pairwise weak base *g*-function for a bispace (X, τ_i, τ_j) satisfying the conditions $(p\sigma')$ and (pN'). For each $x \in X$ and $n \in \mathbb{N}$, put

$$h_i(n, x) = g_i(n, x) - cl_{\tau_i} \{ y \in X : x \notin g_i(n, y) \}.$$

By (pN'), $x \notin cl_{\tau_i} \{ y \in X : x \notin g_i(n, y) \}$, i.e.,

$$x \in g_i(n, x) - cl_{\tau_i} \{ y \in X : x \notin g_i(n, y) \} = h_i(n, x).$$

Hence (h_i, h_j) is a pairwise weak base *q*-function for (X, τ_i, τ_j) with the following property:

If
$$y \in h_i(n, x)$$
, then $y \in g_i(n, x)$ and $x \in g_i(n, y)$.

Now, suppose that $z_n \in h_i(n, x) \cap h_j(n, y_n)$ and $x_n \in h_i(n, y_n)$ for all $n \in \mathbb{N}$. Then $z_n \in g_i(n, x), x \in g_j(n, z_n), z_n \in g_j(n, y_n)$ and $y_n \in g_i(n, z_n)$. It is obvious that $x \in g_j^2(n, y_n)$. It follows from $(p\sigma')$ that the sequence $\{y_n\}$ τ_i -converges to x. There is a subsequence $\{y_{n_m}\}$ of $\{y_n\}$ such that $y_{n_m} \in h_i(m, x)$, then $y_{n_m} \in g_i(m, x)$ and $x \in g_j(m, y_{n_m})$ for all $m \in \mathbb{N}$. Since $x_{n_m} \in h_i(m, y_{n_m})$, we have that $x_{n_m} \in g_i(m, y_{n_m})$ and $y_{n_m} \in g_j(m, x_{n_m})$. Thus $x \in g_j^2(m, x_{n_m})$ for all $m \in \mathbb{N}$. Again, by $(p\sigma')$, the sequence $\{x_{n_m}\}$ τ_i -converges to x, and thus the sequence $\{x_n\}$ τ_i -converges to x. The quasi-metrizability of the bispace (X, τ_i, τ_j) now follows from (1) \Leftrightarrow (4) of Theorem 2.4. \Box

Corollary 2.6. A T_2 -bispace (X, τ_i, τ_j) is quasi-metrizable if and only if it has a pairwise weak base g-function (g_i, g_j) satisfying (pS') and (pN').

Proof. Necessity is from the (2) of Theorem 2.2 and the necessity of Theorem 2.5.

Sufficiency. By Theorem 2.5, we only need to show that $(pS') \Rightarrow (p\sigma')$.

Let (g_i, g_j) be a pairwise weak base *g*-function for (X, τ_i, τ_j) satisfying (pS'). Let $x \in g_j^2(n, x_n)$ for each $n \in \mathbb{N}$. There is $t_n \in g_j(n, x_n)$ such that $x \in g_j(n, t_n)$ for each $n \in \mathbb{N}$. It follows from (pS') that the sequence $\{t_n\}$ τ_i -converges to *x*, and the sequence $\{x_n\}$ τ_i -converges to *x*. Hence, $(pS') \Rightarrow (p\sigma')$.

The following result was obtained in [9].

Theorem 2.7. ([9]) A T_1 -bispace (X, τ_i, τ_j) is quasi-metrizable if and only if it has a pairwise weak base g-function (q_i, q_j) satisfying that

(1) There exists an $m \in \mathbb{N}$ such that $x \notin cl_{\tau_i} \cup \{g_j(m, y) : y \in X - U\}$ for each $x \in X$ and a τ_i -neighborhood U of x. (2) For any $Y \subset X$ and each $n \in \mathbb{N}$, $cl_{\tau_i}Y \subset \cup \{cl_{\tau_i}g_i^2(n, y) : y \in Y\}$.

By the similar method in the proof of Theorem 2.2 in [9], we can prove the following theorem.

Theorem 2.8. Let k > 2. A T_1 -bispace (X, τ_i, τ_j) is quasi-metrizable if and only if it has a pairwise weak base *g*-function (g_i, g_j) satisfying that

(1) There exists an $m \in \mathbb{N}$ such that $x \notin cl_{\tau_i}(\cup \{g_j(m, y) : y \in X - U\})$ for each $x \in X$ and τ_i -neighborhood U of x. (2) For any $Y \subset X$ and $n \in \mathbb{N}$, $cl_{\tau_i}Y \subset \cup \{cl_{\tau_i}g_i^k(n, y) : y \in Y\}$.

Remark 2.9. It is well known that a bispace is pairwise stratifiable if and only if it has a pairwise *g*-function satisfying (1) of Theorem 2.8 [8]. We may say that (2) of Theorem 2.8 give a difference between quasi-metrizable and pairwise stratifiable spaces.

Assume that $\tau_1 = \tau_2 = \tau$, a bispace (X, τ_1, τ_2) is a topological space (X, τ) and the quasi-metrizability of bispaces is equivalent to the metrizability of topological spaces. Thus we have the following corollaries.

Corollary 2.10. ([5, Theorem 6]) Let k > 2. A T_1 -space (X, τ) is metrizable if and only if it has a weak base *q*-function *q* for *X* satisfying that

(1) For each $x \in X$ and a neighborhood U of x, there exists an $m \in \mathbb{N}$ such that

$$x \notin \overline{\bigcup \{q(m, y) : y \in X - U\}}$$

(2) For any $Y \subset X$ and each $n \in \mathbb{N}$,

$$\overline{Y} \subset \cup \{g^k(n, y) : y \in Y\}.$$

Corollary 2.11. ([23, Theorem 2.3]) *The following are equivalent for a* T_2 *-space* (X, τ):

(1) *X* is metrizable;

(2) There is a weak base q-function q for X such that if a sequence $\{y_n\}$ converges to x and $q(n, x_n) \cap q(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ converges to x_i ;

(3) There is a weak base q-function g for X such that if $y_n \in g(n, x)$ and $g(n, x_n) \cap g(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then *the sequence* $\{x_n\}$ *converges to x;*

(4) There is a weak base g-function g for X such that if $q(n, x) \cap q(n, y_n) \neq \emptyset$ and $q(n, x_n) \cap q(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ converges to x_i ;

(5) There is a weak base g-function g for X such that if $g(n, x) \cap g(n, y_n) \neq \emptyset$ and $x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ converges to x;

(6) There is a weak base g-function g for X such that if $x \in g(n, z_n), g(n, z_n) \cap g(n, y_n) \neq \emptyset$ and $x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ converges to x.

Corollary 2.12. ([22, Conditions (1) and (5) in Theorem 2.2]) $A T_1$ -space X is metrizable if and only if there is *weak base g-function (i.e., a CWC-mapping) g for X satisfying that:*

(I) For sequences $\{x_n\}, \{y_n\}$ if the sequence $\{y_n\}$ converges to x and $x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ converges to x.

(II) For sequences $\{x_n\}$, $\{y_n\}$ if the sequence $\{y_n\}$ converges to x and $y_n \in g(n, x_n)$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ converges to x.

Acknowledgments. We wish to thank the referees for the detailed list of corrections, suggestions to the paper, and all their efforts in order to improve the paper.

References

- [1] A.V. Arhangel'skiĭ, Mappings and spaces, Russian Math. Surveys 21 (1966) 115–162.
- [2] B. Chen, S.L. Jiang, Metrizability and weak base q-functions, New Zealand J. Math. 37 (2008) 15-20.
- [3] R. Engelking, General Topology (Revised and completed edition), Heldermann Verlag, Berlin, 1989.
- [4] Zh. Gao, Metrizability of spaces and weak base g-functions, Topology Appl.146-147 (2005) 279–288.
- [5] Zh. Gao, Metrizability of spaces and J. Nagata's problem, Acta Math. Scientia, 26B (2006) 25–30.
 [6] P. Gartside, Generalized metric spaces, I, in: K.P. Hart, J. Nagata and J.V. Vaughan (eds.), Encyclopedia of General Topology, Elsevier Science Publishers, 2004, 273–275.
- [7] J.C. Kelly, Bitoplogical spaces, Proc. London Math. Soc. 13 (1963) 71-89.
- [8] K. Li, Characterizations of pairwise stratifiable spaces, Acta Math. Scientia, 30A (2010) 649-655.
- [9] K. Li, F. Lin, Characterizations of quasi-pseudo-metrizable spaces, Topology Proc. 40 (2012) 121-129.
- [10] K. Li, S. Lin, Notes on symmetric *g*-functions, Acta Math. Hungar. 116 (2007) 73–77.
- [11] S. Lin, Generalized Metric Spaces and Mappings (second edition), China Science Publishers, Beijing, 2007.
- [12] J. Marín, Weak bases and quasi-pseudo-metrization of bispaces, Topology Appl. 156 (2009) 3070–3076.
- [13] H.W. Martin, Weak bases and metrization, Trans. Amer. Math. Soc. 222 (1976) 338–344.
- [14] J. Nagata, Characterizations of metrizable and Lasnev spaces in terms of g-functions, Questions Answers Gen. Topology. 4 (1986) 129-139.
- [15] C.W. Patty, Bitoplogical spaces, Duke Math. J. 34 (1967) 387-392.
- [16] T.G. Raghavan, On quasi-metrizability, Indian J. Pure Appl. Math. 15 (1984) 1084–1089.
- [17] T.G. Raghavan, I.L. Reilly, Characterizations of quasi-metrizable bitopological spaces, J. Aust. Math. Soc. 44 (1984) 271–274.
- [18] S. Romaguera, Two characterizations of quasi-pseudo-metrizable bitopological spaces, J. Aust. Math. Soc. 35 (1983) 327–333.
- [19] S. Romaguera, On bitopological quasi-pseudo-metrization, J. Aust. Math. Soc., 36 (1984), 126-129.
- [20] S. Romaguera, J. Marín, On the bitopological extension of the Bing metrization theorem, J. Aust. Math. Soc. 44 (1988) 233-241.
- [21] S. Salbany, Quasi-metrization of bitopological spaces, Arch. Math. (Basel) 23 (1972) 299-306.
- [22] P.F. Yan, S. Lin, CWC-mappings and metrization theorems, Advances Math. (China) 36 (2007) 153-158.
- [23] E.G. Yang, W.X. Shi, Weak base g-functions and metrizability of topological spaces, Topology Appl. 158 (2011) 238–243.