Filomat 27:6 (2013), 949–954 DOI 10.2298/FIL1306949L

Published by Faculty of Sciences and Mathematics, University of Nis, Serbia ˇ Available at: http://www.pmf.ni.ac.rs/filomat

Quasi-metrizability of bispaces by weak bases

Kedian Li^a , Shou Lin^b

^aDepartment of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, P. R. China ^bDepartment of Mathematics, Ningde Normal University, Ningde 352100, P. R. China

Abstract. In this paper, some characterizations for the quasi-metrizability of bispaces are given by means of pairwise weak base q-functions, which generalizes some metrization theorems for topological spaces.

1. Introduction

Kelly [7] began first systematic discussions of bitopological spaces, and then obtained necessary and sufficient conditions that characterize the quasi-pseudo-metrizability of bispaces, see [15, 17–21]. Recently Marín [12] studied the quasi-pseudo-metrization theorem in the style of Frink's metrization theorem by weak bases, and generalization of the Fox-Künzi theorem [16] and the bitopological extension of the "double sequence" theorem of Nagata [17]. The notion of weak bases was introduced by Arhangel'skiˇı [1] to study symmetrizable spaces. Nagata [14] introduced g -functions and studied systematically the metrizability of spaces by means of g -functions. Gao [4] introduced weak base g -functions by means of weak bases to study metrizability of topological spaces. The authors of [9] presented some criteria for the quasi-pseudo-metrizability of bitopological spaces in terms of pairwise weak developments and pairwise weak base q -functions. Pairwise weak base q -functions are a powerful tool for studying the quasi-pseudometrizability of bitopological spaces. In this paper, we shall continue this approach. Some quasi-metrization theorems of bispaces will be given by means of pairwise weak base q -functions.

First, let us list some concepts and notations used in this paper. N denotes the set of all positive integers. A bispace (a bitopological space in [7]) is a triple (*X*, τ*ⁱ* , τ*j*) where *X* is a nonempty set, and τ*ⁱ* and τ*^j* are two topologies on *X*, *i*, *j* = 1, 2 and *i* \neq *j*. For *A* ⊂ *X*, cl_{τi}*A* denotes the closure of a set *A* in a topological space (*X*, τ_{*i*}), and "a sequence { y_n } τ_{*i*}-converges to *x*" denotes "a sequence { y_n } converges to *x* in a topological space (X, τ_i) ". All spaces (X, τ_i) in this paper are assumed to be T_0 . Undefined terms are given in [3].

Definition 1.1. Let (X, τ) be a topological space. A family B of subsets of X is a *weak base* [1] for the topology τ if for each $x \in X$ there is a subfamily \mathcal{B}_x of \mathcal{B} such that

(a) $x \in B$ for each $B \in \mathcal{B}_x$;

(b) if $A, B \in \mathcal{B}_x$, there is a $C \in \mathcal{B}_x$ such that $C \subset A \cap B$;

(c) a subset $U \subset X$ is open if and only if for each $x \in U$ there exists a $B \in \mathcal{B}_x$ such that $B \subset U$.

Keywords. Quasi-metrization, bispaces, weak bases, pairwise weak base *g*-functions

Received: 03 June 2012; Revised: 22 January 2013; Accepted: 23 January 2013 Communicated by Ljubiša D.R. Kočinac

Corresponding author: Shou Lin

²⁰¹⁰ *Mathematics Subject Classification*. Primary 54E35; Secondary 54E20, 54E55, 54E99

The project is supported by the NNSF (No. 10971186, 11171162, 11201414) of China; Fujian Province Support College Research Plan Project (No. JK2011031)

Email addresses: likd56@126.com (Kedian Li), shoulin60@163.com (Shou Lin)

The family B*^x* is called a *local weak base* at *x* in *X*.

A topological space (X, τ) is said to have a *weak base q-function* [4], if there is a function $q : \mathbb{N} \times X \to \mathcal{P}(X)$ such that for each $x \in X$ and $n \in \mathbb{N}$

 (a) $x \in q(n, x);$

(b) $q(n + 1, x) \subset q(n, x)$;

(c) $\{q(n, x) : n \in \mathbb{N}\}\$ is a local weak base at *x* in *X*.

Let us recall that a function $d: X \times X \to \mathbb{R}^+$ is a *quasi-pseudo-metric* (resp. *quasi-metric*) on a set *X* if for all $x, y, z \in X$, it satisfies that

(a) $d(x, x) = 0$ (resp. $d(x, y) = 0$ if and only if $x = y$); (b) $d(x, z) \leq d(x, y) + d(y, z)$.

If *d* is a quasi-pseudo-metric on *X*, the function d^{-1} defined by $d^{-1}(x, y) = d(y, x)$ is called the *conjugate quasi-pseudo-metric* of *d* on *X*. Each quasi-pseudo-metric *d* on a set *X* induces a topology τ(*d*) on *X*, where for all $x \in X$ and all $r > 0$,

$$
B_d(x,r) = \{y \in X : d(x,y) < r\}
$$

is an open *d*-ball and the family ${B_d(x,r) : x \in X, r > 0}$ of open *d*-balls is a base for the topology $\tau(d)$. A bispace (*X*, τ*ⁱ* , τ*j*) is *quasi-pseudo-metrizable* (resp. *quasi-metrizable*) if there exists a quasi-pseudo-metric (resp. quasi-metric) *d* on *X* such that $τ(d) = τ_i$ and $τ(d⁻¹) = τ_j$ (or $τ(d) = τ_j$ and $τ(d⁻¹) = τ_i$), *i*, *j* = 1, 2 and *i* ≠ *j*. It is easy to check that a space is T_0 and quasi-pseudo-metrizable if and only if it is quasi-metrizable.

A *pair cover* [12] in a bispace (X, τ_i, τ_j) is a family of pairs $(G_i, G_j) = \{(G_{i,\alpha}, G_{j,\alpha}) : \alpha \in I\}$ such that

(i) $G_i = \{G_{i,\alpha} : \alpha \in I\}$ is a cover of *X* for $i = 1, 2$;

(ii) for each $x \in X$ there is an $\alpha \in I$ such that $x \in G_{1,\alpha} \cap G_{2,\alpha}$.

Let (G_i, G_j) and (G'_i, G'_j) be pair covers of a bispaces (X, τ_i, τ_j) . We say that (G'_i, G'_j) *refines* (G_i, G_j) , i.e., $(G'_i, G'_j) < (G_i, G_j)$ if for each pair (G'_i) *i*,α , *G* ′ $f'_{j,\alpha}$) \in $(\mathcal{G}'_i, \mathcal{G}'_j)$ there is a pair $(G_{i,\beta}, G_{j,\beta})$ \in $(\mathcal{G}_i, \mathcal{G}_j)$ such that G'_i *i*,α ⊂ *Gi*,β and *G* ′ *j*_{,α} ⊂ *G*_{*j*,β} for *i*, *j* = 1, 2 and *i* ≠ *j*.

Let (G_i, G_j) be a pair cover of a bispace (X, τ_i, τ_j) . Let *A* be a nonempty subset of *X*. For $i, j = 1, 2$ and $i \neq j$, put

$$
\mathrm{st}(A,\mathcal{G}_i,\mathcal{G}_j)=\cup\{G_{i,\alpha}\in\mathcal{G}_i:A\cap G_{j,\alpha}\neq\emptyset\}.
$$

If $x \in X$, define

$$
\mathrm{st}(x,\mathcal{G}_i,\mathcal{G}_j)=\cup\{G_{i,\alpha}\in\mathcal{G}_i:x\in G_{j,\alpha}\}\
$$

and

$$
\mathrm{st}^2(x,\mathcal{G}_i,\mathcal{G}_j)=\mathrm{st}(\mathrm{st}(x,\mathcal{G}_i,\mathcal{G}_j),\mathcal{G}_i,\mathcal{G}_j).
$$

Definition 1.2. ([9]) A *pairwise weak development* in a bispace (X, τ_i, τ_j) is a sequence $\{(G_{i,n}, G_{j,n}) : n \in \mathbb{N}\}\$ of pair covers of *X* such that for each $x \in X$ {st(x , $G_{i,n}$, $G_{j,n}$) : $n \in \mathbb{N}$ } is a weak base of τ_i -neighborhoods of *x* in *X*.

A bispace (X, τ_i, τ_j) is *pairwise weak developable* if it has a pairwise weak development { $(G_{i,n}, G_{j,n}) : n \in \mathbb{N}$ } such that $(G_{i,n+1}, G_{i,n+1}) < (G_{i,n}, G_{i,n})$ for each $n \in \mathbb{N}$.

A bispace (X, τ_i, τ_j) is said to have a *pairwise weak base g-function* if there are functions $g_i, g_j : N \times X \to$ $P(X)$ (*i* = 1, 2) such that for *i*, *j* = 1, 2 and *i* \neq *j*

(a) $x \in q_i(n, x) \cap q_i(n, x)$ for all $x \in X$ and $n \in \mathbb{N}$;

(b) $g_i(n + 1, x)$ ⊂ $g_i(n, x)$ and $g_j(n + 1, x)$ ⊂ $g_j(n, x)$ for all $n \in \mathbb{N}$;

(c) $\{g_i(n, x) : n \in \mathbb{N}, x \in X\}$ is a weak base for the space (X, τ_i) , and $\{g_i(n, x) : n \in \mathbb{N}, x \in X\}$ is a weak base for the space (X, τ_i) .

Let (g_i, g_j) be a pairwise weak base *g*-function for a bispace (X, τ_i, τ_j) and $k \in \mathbb{N}$. Define

$$
g_i^1(n, x) = g_i(n, x)
$$
 and $g_i^{k+1}(n, x) = \bigcup \{g_i^k(n, y) : y \in g_i(n, x)\}.$

It is easy to verify that $g_i^{k+1}(n, x) = \bigcup \{g_i(n, y) : y \in g_i^k(n, x)\}$ by inductions on $k \in \mathbb{N}$.

2. Main results

Lemma 2.1. ([9]) *A* T₁-bispace (*X*, τ_i, τ_j) is quasi-metrizable if and only if it has a pairwise weak development $\{(G_{i,n},G_{j,n}):n\in\mathbb{N}\}\$ such that $\{st^2(x,G_{i,n},G_{j,n}):n\in\mathbb{N},x\in X\}$ is a weak base for a space (X,τ_i) , $i,j=1,2$ and $i\neq j$.

Theorem 2.2. *For a T*₁-bispace (X, τ_i, τ_j) the following are equivalent:

(1) (*X*, τ*ⁱ* , τ*j*) *is quasi-metrizable;*

(2) There is a pairwise weak base g-function (g_i, g_j) for (X, τ_i, τ_j) such that if a sequence $\{y_n\}$ τ_i -converges to x and $q_i(n, x_n) \cap q_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ τ_i -converges to x;

(3) *There is a pairwise weak base g-function* (g_i, g_j) *for* (X, τ_i, τ_j) *such that*

(3.1) If a sequence $\{y_n\}$ τ_i -converges to x and $x_n \in q_i(n, y_n)$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ τ_i -converges to x.

(3.2) If a sequence $\{y_n\}$ τ_i -converges to x and $y_n \in g_i(n, x_n)$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ τ_i -converges to x.

(4) There is a pairwise weak base g-function (g_i, g_j) for (X, τ_i, τ_j) such that if $x \in g_j(n, z_n)$, $g_i(n, z_n) \cap g_j(n, y_n) \neq \emptyset$ *and* $x_n \in q_i(n, y_n)$ *for all* $n \in \mathbb{N}$ *, then the sequence* $\{x_n\}$ τ_i *-converges to x.*

Proof. (1) \Rightarrow (2) Suppose that (X, τ_i, τ_j) is quasi-metrizable. For each $r > 0$, *i*, $j = 1, 2$ and $i \neq j$, put

$$
B_i(x,r) = \{ y \in X : d(x,y) < r \}, \ B_j(x,r) = \{ y \in X : d(y,x) < r \}
$$

and for each $x \in X$ and $n \in \mathbb{N}$, let

$$
g_i(n,x) = B_i(x, \frac{1}{2^n}), g_j(n,x) = B_j(x, \frac{1}{2^n}).
$$

Then (g_i, g_j) is a pairwise weak base g-function for (X, τ_i, τ_j) satisfying the condition (2). In fact, if a sequence $\{y_n\}$ τ_i -converges to x and $g_i(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, let U be a τ_i -neighborhood of x in X, then there exists an $k \in \mathbb{N}$ such that $g_i(k, x) = B_i(x, \frac{1}{2^k}) \subset U$. Since each $B_i(x, r)$ is open in (X, τ_i) and the sequence $\{y_n\}$ τ_i -converges to *x*, then $\{y_n : n > m\} \subset g_i(\bar{3}k, x)$ for some $m \in \mathbb{N}$. Let $n_0 = \max\{3k, 3m\}$. We can choose $t_n \in g_j(n, x_n) \cap g_i(n, y_n)$ for each $n > n_0$ by $g_j(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$. Thus

$$
d(x,x_n)\leq d(x,y_n)+d(y_n,t_n)+d(t_n,x_n)\leq \frac{1}{2^{3k}}+\frac{1}{2^n}+\frac{1}{2^n}<\frac{1}{2^k}.
$$

That is $x_n \in U$ for each $n > n_0$, therefore the sequence $\{x_n\}$ τ_i -converges to *x*.

(2) \Rightarrow (3) Let (g_i , g_j) be a pairwise weak base *g*-function satisfying the condition (2). Suppose that a sequence $\{y_n\}$ τ_i -converges to x and $x_n \in g_i(n, y_n)$ for all $n \in \mathbb{N}$. Then $x_n \in g_i(n, x_n) \cap g_i(n, y_n)$, thus the sequence $\{x_n\}$ τ_i -converges to x , and (3.1) holds. By a similar proof, (3.2) holds.

(3) \Rightarrow (4) Let (g_i, g_j) be a pairwise weak base g-function satisfying the condition (3). Suppose that $x \in g_i(n, z_n)$, $g_i(n, z_n) \cap g_i(n, y_n) \neq \emptyset$ and $x_n \in g_i(n, y_n)$ for all $n \in \mathbb{N}$. Since $x \in g_i(n, z_n)$, then the sequence $\{z_n\}$ τ_i -converges to x by (3.2). Take $t_n \in g_i(n, z_n) \cap g_j(n, y_n)$ for all $n \in \mathbb{N}$, then the sequence $\{t_n\}$ τ_i -converges to *x* by (3.1), and the sequence $\{y_n\}$ τ_i -converges to *x* by (3.2). Since $x_n \in q_i(n, y_n)$ and the sequence $\{y_n\}$ τ*i*-converges to *x*, the sequence {*xn*} τ*i*-converges to *x* by (3.1).

(4) \Rightarrow (1) Let (g_i , g_j) be a pairwise weak base *g*-function satisfying the condition (4). For *i* = 1, 2 and $n \in \mathbb{N}$, let

$$
\mathcal{G}_{i,n} = \{g_i(n,x) : x \in X\}.
$$

Then $(G_{i,n+1},G_{j,n+1})<(G_{i,n},G_{j,n})$ for each $n\in\mathbb{N}$. By Lemma 2.1, we only need to show that $\{st^2(x,G_{i,n},G_{j,n}):$ $x \in X, n \in \mathbb{N}$ is a weak base for (X, τ_i) , $i, j = 1, 2$ and $i \neq j$.

Let $U \subset X$ in which for any $x \in U$ there is some $n \in \mathbb{N}$ such that st²($x, G_{i,n}, G_{j,n}$) ⊂ U . Then $g_i(n,x) \subset U$. Since $\{g_i(n, x) : x \in X, n \in \mathbb{N}\}$ is a weak base for (X, τ_i) , thus *U* is τ_i -open. On the other hand, suppose *U* is τ_i open and $x \in U$. We want to verify st²(x, $G_{i,m}$, $G_{j,m}$) $\subset U$ for some $m \in \mathbb{N}$. If not, take $x_n \in$ st²(x, $G_{i,n}$, $G_{j,n}$) – U for each $n \in \mathbb{N}$. Also, we can get $y_n \in X$ such that $x_n \in g_i(n, y_n)$ with $g_j(n, y_n) \cap st(x, G_{i,n}, G_{j,n}) \neq \emptyset$, and thus there exist z_n , $s_n \in X$ with $s_n \in g_i(n, z_n) \cap g_i(n, y_n)$ and $x \in g_i(n, z_n)$. Then the sequence $\{x_n\}$ τ_i -converges to x by (4). This is a contradiction.

Hence, (*X*, τ*ⁱ* , τ*j*) is quasi-metrizable by Lemma 2.1.

Lemma 2.3. ([11]) Let $\mathcal{B}_i = \bigcup \{ \mathcal{B}(i,x) : x \in X \}$ be a weak base for a T_2 -space (X, τ_i) . For each $x \in X$ and $B \in \mathcal{B}(i,x)$, *if a sequence* $\{x_n\}$ τ_i -converges to x, then $\{x_n : n > m\} \subset B$ for some $m \in \mathbb{N}$.

Theorem 2.4. For a T₂-bispace (X, τ_i, τ_j) the following are equivalent:

(1) (*X*, τ*ⁱ* , τ*j*) *is quasi-metrizable;*

(2) There is a pairwise weak base g-function (g_i, g_j) for (X, τ_i, τ_j) such that if $y_n \in g_i(n, x)$ and $g_j(n, x_n) \cap g_i(n, y_n) \neq 0$ ∅ *for all n* ∈ N*, then the sequence* {*xn*} τ*i-converges to x;*

(3) There is a pairwise weak base g-function (g_i, g_j) for (X, τ_i, τ_j) such that if $g_i(n, x) \cap g_j(n, y_n) \neq \emptyset$ and $g_i(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ τ_i -converges to x;

(4) There is a pairwise weak base g-function (g_i, g_j) for (X, τ_i, τ_j) such that if $g_i(n, x) \cap g_j(n, y_n) \neq \emptyset$ and $x_n \in q_i(n, y_n)$ *for all* $n \in \mathbb{N}$ *, then the sequence* $\{x_n\}$ τ_i *-converges to x.*

Proof. (1) \Rightarrow (2) Since (*X*, τ_i , τ_j) is quasi-metrizable, there is a pairwise weak base *g*-function (g_i , g_j) for (X, τ_i, τ_j) satisfying the condition (2) in Theorem 2.2. Suppose that $y_n \in g_i(n, x)$ and $g_j(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$. Since $\{g_i(n, x) : n \in \mathbb{N}\}$ is a local weak base at *x* for the space (X, τ_i) , the sequence $\{y_n\}$ τ_i -converges to x by $y_n \in g_i(n, x)$. Then the sequence $\{x_n\}$ τ_i -converges to x by $g_i(n, x_n) \cap g_i(n, y_n) \neq \emptyset$ and (2) in Theorem 2.2.

(2) \Rightarrow (3) Let (g_i , g_j) be a pairwise weak base *g*-function satisfying the condition (2). Suppose that $q_i(n,x) \cap q_i(n,y_n) \neq \emptyset$ and $q_i(n,x_n) \cap q_i(n,y_n) \neq \emptyset$ for all $n \in \mathbb{N}$. If the sequence $\{x_n\}$ does not τ_i -converge to x, then there are a neighborhood *U* of *x* in *X* and a subsequence { x_{n_l} } of { x_n } such that $x_{n_l} \notin U$ for all $l \in \mathbb{N}$. Take $z_l \in g_i(n_l, x) \cap g_j(n_l, y_{n_l})$ for all $l \in \mathbb{N}$. Since $z_l \in g_i(n_l, x) \subset g_i(l, x)$ and $z_l \in g_j(n_l, y_{n_l}) \cap g_i(l, z_l) \subset g_j(l, y_{n_l}) \cap g_i(l, z_l)$, the sequence $\{y_{n_l}\}\tau_i$ -converges to *x* by (2). By Lemma 2.3, there is a subsequence $\{y_{n_{l_k}}\}$ of $\{y_{n_l}\}$ such that $y_{n_{l_k}} \in g_i(k, x)$ for all $k \in \mathbb{N}$. Since $g_j(k, x_{n_{l_k}}) \cap g_i(k, y_{n_{l_k}}) \supset g_j(n_{l_k}, x_{n_{l_k}}) \cap g_i(n_{l_k}, y_{n_{l_k}}) \neq \emptyset$, the subsequence $\{x_{n_{l_k}}\}$ τ_i converges to *x* by (2). That is a contradiction with $\hat{x}_{n_{l_k}} \notin U$ for all $k \in \mathbb{N}$. Thus the sequence $\{x_n\}$ τ_i -converges to x .

 $(3) \Rightarrow (4)$ Obviously.

(4) \Rightarrow (1) Let (g_i , g_j) be a pairwise weak base *g*-function satisfying the condition (4). It is enough to show the (g_i, g_j) satisfies the condition (4) in Theorem 2.2. Suppose that $x \in g_j(n, z_n)$, $g_i(n, z_n) \cap g_j(n, y_n) \neq \emptyset$ and $x_n \in g_i(n, y_n)$ for all $n \in \mathbb{N}$. Take $t_n \in g_i(n, z_n) \cap g_i(n, y_n)$ for each $n \in \mathbb{N}$. Then the sequence $\{t_n\}$ τ_i -converges to x by $g_i(n,x) \cap g_j(n,z_n) \neq \emptyset$ and (4). By Lemma 2.3, there exists a subsequence $\{t_{n_k}\}$ of $\{t_n\}$ with $t_{n_k} \in g_i(k,x)$ for all $k \in \mathbb{N}$. Then $t_{n_k} \in g_i(k, x) \cap g_j(n_k, y_{n_k}) \subset g_i(k, x) \cap g_j(k, y_{n_k})$ and $x_{n_k} \in g_i(n_k, y_{n_k}) \subset g_i(k, y_{n_k})$ for all $k \in \mathbb{N}$. Again, by (4), the sequence $\{x_{n_k}\}\tau_i$ -converges to *x*. By a similar method in (2) \Rightarrow (3) above, the sequence ${x_n}$ *τ_i*-converges to *x*. \square

Let $k \in \mathbb{N}$. Consider the following conditions about a pairwise weak base g-function (g_i, g_j) for a bispace (*X*, τ*ⁱ* , τ*j*).

 $(p\sigma')$ If $x \in g_j^2(n, x_n)$ for all $n \in \mathbb{N}$, then $\{x_n\}$ τ_i -converges to x .

(*pN'*) For any $A \subset X$ and each $n \in \mathbb{N}$, $\text{cl}_{\tau_i}A \subset \cup \{g_j(n,x) : x \in A\}$.

(*pS*^{\prime}) If {*y_n*} τ _{*i*}-converges to *x* and *y_n* \in *g*_{*j*}(*n*, *x_n*) for all *n* \in N, then {*x_n*} τ _{*i*}-converges to *x*.

Theorem 2.5. A T₂-bispace (X, τ_i, τ_j) is quasi-metrizable if and only if it has a pairwise weak base g-function (g_i, g_j) *satisfying* (*p*σ ′) *and* (*pN*′)*.*

Proof. Necessity. Let (X, τ_i, τ_j) be a quasi-pseudo-metrizable bispace. Let g_i, g_j be the functions defined by the proof of $(1) \Rightarrow (2)$ in Theorem 2.2.

First, $(p\sigma')$ holds. Let $x \in g_j^2(n, x_n)$ for all $n \in \mathbb{N}$, then $x \in g_j(n, t_n)$ and $t_n \in g_j(n, x_n)$. $\{t_n\}$ τ_i -converges to x by the condition (2) of Theorem 2.2. Again by the condition (2) of Theorem 2.2, then {*xn*} τ*i*-converges to *x*.

Secondly, (pN') holds. Assume that there are a subset $A\subset X$ and an $m\in\mathbb{N}$ such that cl_{τi} $A\not\subset\cup\{g_j(m,y):j\in\mathbb{N}\}$ *y* ∈ *A*}, then there exists a point $x \in cl_{\tau}A - \cup \{g_i(m, y) : y \in A\}$. Since (X, τ_i) is first-countable, there is a sequence $\{y_n\} \subset A$ such that $\{y_n\} \tau_i$ -converges to *x*. For $k \in \mathbb{N}$ and $k > m$, since $g_i(k, x)$ is open in (X, τ_i) , then ${y_n : n > n_0}$ ⊂ $q_i(k, x)$ for some n_0 ∈ N.

Because $x \notin \bigcup \{q_i(m, y) : y \in A\}$, then $x \notin q_i(m, \nu_n)$ for any $n \in \mathbb{N}$. Let $k > m$ and $n > \max\{m, n_0\}$, then $y_n \in g_i(k, x)$ and $x \notin g_j(m, y_n)$. We have $d(x, y_n) < \frac{1}{2^k} < \frac{1}{2^m}$ and $d(x, y_n) \ge \frac{1}{2^m}$, this is a contradiction. Therefore, the condition (*pN*′) holds.

Sufficiency. Let (g_i, g_j) be a pairwise weak base g -function for a bispace (X, τ_i, τ_j) satisfying the conditions ($p\sigma'$) and (pN'). For each $x \in X$ and $n \in \mathbb{N}$, put

$$
h_i(n,x) = g_i(n,x) - \mathrm{cl}_{\tau_i}\{y \in X : x \notin g_j(n,y)\}.
$$

By (pN') , $x \notin cl_{\tau_i} \{ y \in X : x \notin g_j(n, y) \}$, i.e.,

$$
x\in g_i(n,x)-\mathrm{cl}_{\tau_i}\{y\in X:x\notin g_j(n,y)\}=h_i(n,x).
$$

Hence (h_i, h_j) is a pairwise weak base *g*-function for (X, τ_i, τ_j) with the following property:

If
$$
y \in h_i(n, x)
$$
, then $y \in g_i(n, x)$ and $x \in g_j(n, y)$.

Now, suppose that $z_n \in h_i(n,x) \cap h_i(n,y_n)$ and $x_n \in h_i(n,y_n)$ for all $n \in \mathbb{N}$. Then $z_n \in q_i(n,x)$, $x \in$ $g_j(n,z_n)$, $z_n \in g_j(n,y_n)$ and $y_n \in g_i(n,z_n)$. It is obvious that $x \in g_j^2(n,y_n)$. It follows from $(p\sigma')$ that the sequence $\{y_n\}$ τ_i -converges to x. There is a subsequence $\{y_{n_m}\}\$ of $\{y_n\}$ such that $y_{n_m} \in h_i(m, x)$, then $y_{n_m} \in g_i(m, x)$ and $x \in g_j(m, y_{n_m})$ for all $m \in \mathbb{N}$. Since $x_{n_m} \in h_i(m, y_{n_m})$, we have that $x_{n_m} \in g_i(m, y_{n_m})$ and $y_{n_m} \in g_j(m, x_{n_m})$. Thus $x \in g_j^2(m, x_{n_m})$ for all $m \in \mathbb{N}$. Again, by $(p\sigma')$, the sequence $\{x_{n_m}\}\tau_i$ -converges to *x*, and thus the sequence $\{x_n\}$ τ_i -converges to *x*. The quasi-metrizability of the bispace (X, τ_i, τ_j) now follows from $(1) \Leftrightarrow (4)$ of Theorem 2.4. \Box

Corollary 2.6. A T₂-bispace (X, τ_i , τ_j) is quasi-metrizable if and only if it has a pairwise weak base g-function (g_i , g_j) *satisfying* (*pS*′) *and* (*pN*′)*.*

Proof. Necessity is from the (2) of Theorem 2.2 and the necessity of Theorem 2.5.

Sufficiency. By Theorem 2.5, we only need to show that $(pS') \Rightarrow (p\sigma')$.

Let (g_i, g_j) be a pairwise weak base *g*-function for (X, τ_i, τ_j) satisfying (pS') . Let $x \in g_j^2(n, x_n)$ for each *n* ∈ N. There is t_n ∈ $g_j(n, x_n)$ such that x ∈ $g_j(n, t_n)$ for each n ∈ N. It follows from (pS') that the sequence ${t_n}$ τ_i -converges to *x*, and the sequence ${x_n}$ τ_i -converges to *x*. Hence, $(pS') \Rightarrow (p\sigma')$.

The following result was obtained in [9].

Theorem 2.7. ([9]) *A* T₁-bispace (*X*, τ_i, τ_j) is quasi-metrizable if and only if it has a pairwise weak base g-function (1*i* , 1*j*) *satisfying that*

(1) *There exists an m* ∈ **N** *such that* $x \notin cl_{\tau_i} ∪ {g_i(m, y) : y ∈ X − U}$ *for each* $x ∈ X$ *and a* τ_i -neighborhood U of x. (2) *For any Y* ⊂ *X and each n* ∈ **N**, $cl_{τ_i}$ *Y* ⊂ ∪{ $cl_{τ_i}g_j^2(n, y) : y ∈ Y$ }.

By the similar method in the proof of Theorem 2.2 in [9], we can prove the following theorem.

Theorem 2.8. Let $k > 2$. A T₁-bispace (X, τ_i, τ_j) is quasi-metrizable if and only if it has a pairwise weak base 1*-function* (1*ⁱ* , 1*j*) *satisfying that*

(1) *There exists an* $m ∈ ℕ$ *such that* $x ∉ cl_{τ_i}(∪{g_j(m, y) : y ∈ X − U})$ *for each* $x ∈ X$ *and* $τ_i$ -neighborhood U of x. (2) *For any* $Y \subset X$ *and* $n \in \mathbb{N}$, $cl_{\tau_i} Y \subset \bigcup \{cl_{\tau_i} g_j^k(n, y) : y \in Y\}$ *.*

Remark 2.9. It is well known that a bispace is pairwise stratifiable if and only if it has a pairwise q function satisfying (1) of Theorem 2.8 [8]. We may say that (2) of Theorem 2.8 give a difference between quasi-metrizable and pairwise stratifiable spaces.

Assume that $\tau_1 = \tau_2 = \tau$, a bispace (X, τ_1, τ_2) is a topological space (X, τ) and the quasi-metrizability of bispaces is equivalent to the metrizability of topological spaces. Thus we have the following corollaries.

Corollary 2.10. ([5, Theorem 6]) Let $k > 2$. A T_1 -space (X, τ) is metrizable if and only if it has a weak base 1*-function* 1 *for X satisfying that*

(1) For each x ∈ *X and a neighborhood U of x, there exists an m* ∈ N *such that*

$$
x \notin \overline{\cup \{g(m, y) : y \in X - U\}}.
$$

(2) For any Y ⊂ *X and each n* ∈ \mathbb{N} *,*

$$
\overline{Y} \subset \cup \{g^k(n,y) : y \in Y\}.
$$

Corollary 2.11. ([23, Theorem 2.3]) *The following are equivalent for a T*₂-space (X, τ) *:*

(1) *X is metrizable;*

(2) There is a weak base q-function q for X such that if a sequence $\{y_n\}$ converges to x and $q(n, x_n) \cap q(n, y_n) \neq \emptyset$ *for all* $n \in \mathbb{N}$ *, then the sequence* $\{x_n\}$ *converges to x;*

(3) There is a weak base q-function q for X such that if $y_n \in q(n, x)$ and $q(n, x_n) \cap q(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then *the sequence* $\{x_n\}$ *converges to x;*

(4) There is a weak base q-function q for X such that if $q(n, x) \cap q(n, y_n) \neq \emptyset$ and $q(n, x_n) \cap q(n, y_n) \neq \emptyset$ for all $n \in \mathbb{N}$, then the sequence $\{x_n\}$ converges to x;

(5) *There is a weak base g-function g for X such that if* $g(n, x) \cap g(n, y_n) \neq \emptyset$ *and* $x_n \in g(n, y_n)$ *for all* $n \in \mathbb{N}$ *, then the sequence* $\{x_n\}$ *converges to x;*

(6) There is a weak base g-function g for X such that if $x \in g(n, z_n)$, $g(n, z_n) \cap g(n, y_n) \neq \emptyset$ and $x_n \in g(n, y_n)$ for *all* $n \in \mathbb{N}$ *, then the sequence* $\{x_n\}$ *converges to x.*

Corollary 2.12. ([22, Conditions (1) and (5) in Theorem 2.2]) *A T*1*-space X is metrizable if and only if there is weak base g-function (i.e., a CWC-mapping) g for X satisfying that:*

(I) For sequences $\{x_n\}$, $\{y_n\}$ if the sequence $\{y_n\}$ converges to x and $x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$, then the sequence {*xn*} *converges to x.*

(II) For sequences $\{x_n\}$, $\{y_n\}$ if the sequence $\{y_n\}$ converges to x and $y_n \in g(n, x_n)$ for all $n \in \mathbb{N}$, then the sequence {*xn*} *converges to x.*

Acknowledgments. We wish to thank the referees for the detailed list of corrections, suggestions to the paper, and all their efforts in order to improve the paper.

References

- [1] A.V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21 (1966) 115-162.
- [2] B. Chen, S.L. Jiang, Metrizability and weak base q-functions, New Zealand J. Math. 37 (2008) 15–20.
- [3] R. Engelking, General Topology (Revised and completed edition), Heldermann Verlag, Berlin, 1989.
- [4] Zh. Gao, Metrizability of spaces and weak base g-functions, Topology Appl.146-147 (2005) 279-288.
- [5] Zh. Gao, Metrizability of spaces and J. Nagata's problem, Acta Math. Scientia, 26B (2006) 25–30.
- [6] P. Gartside, Generalized metric spaces, I, in: K.P. Hart, J. Nagata and J.V. Vaughan (eds.), Encyclopedia of General Topology, Elsevier Science Publishers, 2004, 273–275.
- [7] J.C. Kelly, Bitoplogical spaces, Proc. London Math. Soc. 13 (1963) 71–89.
- [8] K. Li, Characterizations of pairwise stratifiable spaces, Acta Math. Scientia, 30A (2010) 649–655.
- [9] K. Li, F. Lin, Characterizations of quasi-pseudo-metrizable spaces, Topology Proc. 40 (2012) 121–129.
- [10] K. Li, S. Lin, Notes on symmetric g-functions, Acta Math. Hungar. 116 (2007) 73-77.
- [11] S. Lin, Generalized Metric Spaces and Mappings (second edition), China Science Publishers, Beijing, 2007.
- [12] J. Marín, Weak bases and quasi-pseudo-metrization of bispaces, Topology Appl. 156 (2009) 3070-3076.
- [13] H.W. Martin, Weak bases and metrization, Trans. Amer. Math. Soc. 222 (1976) 338–344.
- [14] J. Nagata, Characterizations of metrizable and Lasnev spaces in terms of g-functions, Questions Answers Gen. Topology. 4 (1986) 129–139.
- [15] C.W. Patty, Bitoplogical spaces, Duke Math. J. 34 (1967) 387–392.
- [16] T.G. Raghavan, On quasi-metrizability, Indian J. Pure Appl. Math. 15 (1984) 1084–1089.
- [17] T.G. Raghavan, I.L. Reilly, Characterizations of quasi-metrizable bitopological spaces, J. Aust. Math. Soc. 44 (1984) 271–274.
- [18] S. Romaguera, Two characterizations of quasi-pseudo-metrizable bitopological spaces, J. Aust. Math. Soc. 35 (1983) 327–333.
- [19] S. Romaguera, On bitopological quasi-pseudo-metrization, J. Aust. Math. Soc., **36** (1984), 126-129.
- [20] S. Romaguera, J. Marín, On the bitopological extension of the Bing metrization theorem, J. Aust. Math. Soc. 44 (1988) 233–241.
- [21] S. Salbany, Quasi-metrization of bitopological spaces, Arch. Math. (Basel) 23 (1972) 299–306.
- [22] P.F. Yan, S. Lin, CWC-mappings and metrization theorems, Advances Math. (China) 36 (2007) 153–158.
- [23] E.G. Yang, W.X. Shi, Weak base g-functions and metrizability of topological spaces, Topology Appl. 158 (2011) 238-243.