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Abstract. In this paper, some characterizations for the quasi-metrizability of bispaces are given by means
of pairwise weak base 1-functions, which generalizes some metrization theorems for topological spaces.

1. Introduction

Kelly [7] began first systematic discussions of bitopological spaces, and then obtained necessary and
sufficient conditions that characterize the quasi-pseudo-metrizability of bispaces, see [15, 17–21]. Recently
Marı́n [12] studied the quasi-pseudo-metrization theorem in the style of Frink’s metrization theorem by
weak bases, and generalization of the Fox-Künzi theorem [16] and the bitopological extension of the
“double sequence” theorem of Nagata [17]. The notion of weak bases was introduced by Arhangel’skiı̌
[1] to study symmetrizable spaces. Nagata [14] introduced 1-functions and studied systematically the
metrizability of spaces by means of 1-functions. Gao [4] introduced weak base 1-functions by means of
weak bases to study metrizability of topological spaces. The authors of [9] presented some criteria for the
quasi-pseudo-metrizability of bitopological spaces in terms of pairwise weak developments and pairwise
weak base 1-functions. Pairwise weak base 1-functions are a powerful tool for studying the quasi-pseudo-
metrizability of bitopological spaces. In this paper, we shall continue this approach. Some quasi-metrization
theorems of bispaces will be given by means of pairwise weak base 1-functions.

First, let us list some concepts and notations used in this paper. N denotes the set of all positive integers.
A bispace (a bitopological space in [7]) is a triple (X, τi, τ j) where X is a nonempty set, and τi and τ j are two
topologies on X, i, j = 1, 2 and i , j. For A ⊂ X, clτi A denotes the closure of a set A in a topological space
(X, τi), and “a sequence {yn} τi-converges to x” denotes “a sequence {yn} converges to x in a topological
space (X, τi)”. All spaces (X, τi) in this paper are assumed to be T0. Undefined terms are given in [3].

Definition 1.1. Let (X, τ) be a topological space. A familyB of subsets of X is a weak base [1] for the topology
τ if for each x ∈ X there is a subfamily Bx of B such that

(a) x ∈ B for each B ∈ Bx;
(b) if A,B ∈ Bx, there is a C ∈ Bx such that C ⊂ A ∩ B;
(c) a subset U ⊂ X is open if and only if for each x ∈ U there exists a B ∈ Bx such that B ⊂ U.
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The family Bx is called a local weak base at x in X.
A topological space (X, τ) is said to have a weak base 1-function [4], if there is a function 1 :N×X→ P(X)

such that for each x ∈ X and n ∈N
(a) x ∈ 1(n, x);
(b) 1(n + 1, x) ⊂ 1(n, x);
(c) {1(n, x) : n ∈N} is a local weak base at x in X.

Let us recall that a function d : X × X → R+ is a quasi-pseudo-metric (resp. quasi-metric) on a set X if for
all x, y, z ∈ X, it satisfies that

(a) d(x, x) = 0 (resp. d(x, y) = 0 if and only if x = y);
(b) d(x, z) ≤ d(x, y) + d(y, z).

If d is a quasi-pseudo-metric on X, the function d−1 defined by d−1(x, y) = d(y, x) is called the conjugate
quasi-pseudo-metric of d on X. Each quasi-pseudo-metric d on a set X induces a topology τ(d) on X, where
for all x ∈ X and all r > 0,

Bd(x, r) = {y ∈ X : d(x, y) < r}
is an open d-ball and the family {Bd(x, r) : x ∈ X, r > 0} of open d-balls is a base for the topology τ(d). A
bispace (X, τi, τ j) is quasi-pseudo-metrizable (resp. quasi-metrizable) if there exists a quasi-pseudo-metric (resp.
quasi-metric) d on X such that τ(d) = τi and τ(d−1) = τ j (or τ(d) = τ j and τ(d−1) = τi), i, j = 1, 2 and i , j. It
is easy to check that a space is T0 and quasi-pseudo-metrizable if and only if it is quasi-metrizable.

A pair cover [12] in a bispace (X, τi, τ j) is a family of pairs (Gi,G j) = {(Gi,α,G j,α) : α ∈ I} such that
(i) Gi = {Gi,α : α ∈ I} is a cover of X for i = 1, 2;
(ii) for each x ∈ X there is an α ∈ I such that x ∈ G1,α ∩ G2,α.
Let (Gi,G j) and (G′i ,G′j) be pair covers of a bispaces (X, τi, τ j). We say that (G′i ,G′j) refines (Gi,G j), i.e.,

(G′i ,G′j) < (Gi,G j) if for each pair (G′i,α,G
′
j,α) ∈ (G′i ,G′j) there is a pair (Gi,β,G j,β) ∈ (Gi,G j) such that G′i,α ⊂ Gi,β

and G′j,α ⊂ G j,β for i, j = 1, 2 and i , j.
Let (Gi,G j) be a pair cover of a bispace (X, τi, τ j). Let A be a nonempty subset of X. For i, j = 1, 2 and

i , j, put
st(A,Gi,G j) = ∪{Gi,α ∈ Gi : A ∩ G j,α , ∅}.

If x ∈ X, define
st(x,Gi,G j) = ∪{Gi,α ∈ Gi : x ∈ G j,α}

and
st2(x,Gi,G j) = st(st(x,Gi,G j),Gi,G j).

Definition 1.2. ([9]) A pairwise weak development in a bispace (X, τi, τ j) is a sequence {(Gi,n,G j,n) : n ∈ N} of
pair covers of X such that for each x ∈ X {st(x,Gi,n,G j,n) : n ∈ N} is a weak base of τi-neighborhoods of x in
X.

A bispace (X, τi, τ j) is pairwise weak developable if it has a pairwise weak development {(Gi,n,G j,n) : n ∈N}
such that (Gi,n+1,G j,n+1) < (Gi,n,G j,n) for each n ∈N.

A bispace (X, τi, τ j) is said to have a pairwise weak base 1-function if there are functions 1i, 1 j : N × X →
P(X) (i = 1, 2) such that for i, j = 1, 2 and i , j

(a) x ∈ 1i(n, x) ∩ 1 j(n, x) for all x ∈ X and n ∈N;
(b) 1i(n + 1, x) ⊂ 1i(n, x) and 1 j(n + 1, x) ⊂ 1 j(n, x) for all n ∈N;
(c) {1i(n, x) : n ∈ N, x ∈ X} is a weak base for the space (X, τi), and {1 j(n, x) : n ∈N, x ∈ X} is a weak base

for the space (X, τ j).

Let (1i, 1 j) be a pairwise weak base 1-function for a bispace (X, τi, τ j) and k ∈N. Define

11
i (n, x) = 1i(n, x) and 1k+1

i (n, x) = ∪{1k
i (n, y) : y ∈ 1i(n, x)}.

It is easy to verify that 1k+1
i (n, x) =

∪{1i(n, y) : y ∈ 1k
i (n, x)} by inductions on k ∈N.
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2. Main results

Lemma 2.1. ([9]) A T1-bispace (X, τi, τ j) is quasi-metrizable if and only if it has a pairwise weak development
{(Gi,n,G j,n) : n ∈N} such that {st2(x,Gi,n,G j,n) : n ∈N, x ∈ X} is a weak base for a space (X, τi), i, j = 1, 2 and i , j.

Theorem 2.2. For a T1-bispace (X, τi, τ j) the following are equivalent:
(1) (X, τi, τ j) is quasi-metrizable;
(2) There is a pairwise weak base 1-function (1i, 1 j) for (X, τi, τ j) such that if a sequence {yn} τi-converges to x and

1 j(n, xn) ∩ 1i(n, yn) , ∅ for all n ∈N, then the sequence {xn} τi-converges to x;
(3) There is a pairwise weak base 1-function (1i, 1 j) for (X, τi, τ j) such that

(3.1) If a sequence {yn} τi-converges to x and xn ∈ 1i(n, yn) for all n ∈N, then the sequence {xn} τi-converges to x.
(3.2) If a sequence {yn} τi-converges to x and yn ∈ 1 j(n, xn) for all n ∈N, then the sequence {xn} τi-converges to x.

(4) There is a pairwise weak base 1-function (1i, 1 j) for (X, τi, τ j) such that if x ∈ 1 j(n, zn), 1i(n, zn)∩1 j(n, yn) , ∅
and xn ∈ 1i(n, yn) for all n ∈N, then the sequence {xn} τi-converges to x.

Proof. (1)⇒ (2) Suppose that (X, τi, τ j) is quasi-metrizable. For each r > 0, i, j = 1, 2 and i , j, put

Bi(x, r) = {y ∈ X : d(x, y) < r}, B j(x, r) = {y ∈ X : d(y, x) < r}

and for each x ∈ X and n ∈N, let

1i(n, x) = Bi(x,
1
2n ), 1 j(n, x) = B j(x,

1
2n ).

Then (1i, 1 j) is a pairwise weak base 1-function for (X, τi, τ j) satisfying the condition (2). In fact, if a sequence
{yn} τi-converges to x and 1 j(n, xn) ∩ 1i(n, yn) , ∅ for all n ∈ N, let U be a τi-neighborhood of x in X, then
there exists an k ∈ N such that 1i(k, x) = Bi(x, 1

2k ) ⊂ U. Since each Bi(x, r) is open in (X, τi) and the sequence
{yn} τi-converges to x, then {yn : n > m} ⊂ 1i(3k, x) for some m ∈ N. Let n0 = max{3k, 3m}. We can choose
tn ∈ 1 j(n, xn) ∩ 1i(n, yn) for each n > n0 by 1 j(n, xn) ∩ 1i(n, yn) , ∅ for all n ∈N. Thus

d(x, xn) ≤ d(x, yn) + d(yn, tn) + d(tn, xn) ≤ 1
23k
+

1
2n +

1
2n <

1
2k
.

That is xn ∈ U for each n > n0, therefore the sequence {xn} τi-converges to x.
(2) ⇒ (3) Let (1i, 1 j) be a pairwise weak base 1-function satisfying the condition (2). Suppose that a

sequence {yn} τi-converges to x and xn ∈ 1i(n, yn) for all n ∈ N. Then xn ∈ 1 j(n, xn) ∩ 1i(n, yn), thus the
sequence {xn} τi-converges to x, and (3.1) holds. By a similar proof, (3.2) holds.

(3) ⇒ (4) Let (1i, 1 j) be a pairwise weak base 1-function satisfying the condition (3). Suppose that
x ∈ 1 j(n, zn), 1i(n, zn) ∩ 1 j(n, yn) , ∅ and xn ∈ 1i(n, yn) for all n ∈ N. Since x ∈ 1 j(n, zn), then the sequence
{zn} τi-converges to x by (3.2). Take tn ∈ 1i(n, zn)∩ 1 j(n, yn) for all n ∈N, then the sequence {tn} τi-converges
to x by (3.1), and the sequence {yn} τi-converges to x by (3.2). Since xn ∈ 1i(n, yn) and the sequence {yn}
τi-converges to x, the sequence {xn} τi-converges to x by (3.1).

(4) ⇒ (1) Let (1i, 1 j) be a pairwise weak base 1-function satisfying the condition (4). For i = 1, 2 and
n ∈N, let

Gi,n = {1i(n, x) : x ∈ X}.
Then (Gi,n+1,G j,n+1) < (Gi,n,G j,n) for each n ∈N. By Lemma 2.1, we only need to show that {st2(x,Gi,n,G j,n) :
x ∈ X,n ∈N} is a weak base for (X, τi), i, j = 1, 2 and i , j.

Let U ⊂ X in which for any x ∈ U there is some n ∈ N such that st2(x,Gi,n,G j,n) ⊂ U. Then 1i(n, x) ⊂ U.
Since {1i(n, x) : x ∈ X,n ∈N} is a weak base for (X, τi), thus U is τi-open. On the other hand, suppose U is τi-
open and x ∈ U. We want to verify st2(x,Gi,m,G j,m) ⊂ U for some m ∈N. If not, take xn ∈ st2(x,Gi,n,G j,n)−U
for each n ∈ N. Also, we can get yn ∈ X such that xn ∈ 1i(n, yn) with 1 j(n, yn) ∩ st(x,Gi,n,G j,n) , ∅, and thus
there exist zn, sn ∈ X with sn ∈ 1i(n, zn) ∩ 1 j(n, yn) and x ∈ 1 j(n, zn). Then the sequence {xn} τi-converges to x
by (4). This is a contradiction.

Hence, (X, τi, τ j) is quasi-metrizable by Lemma 2.1.
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Lemma 2.3. ([11]) Let Bi =
∪{B(i, x) : x ∈ X} be a weak base for a T2-space (X, τi). For each x ∈ X and B ∈ B(i, x),

if a sequence {xn} τi-converges to x, then {xn : n > m} ⊂ B for some m ∈N.

Theorem 2.4. For a T2-bispace (X, τi, τ j) the following are equivalent:
(1) (X, τi, τ j) is quasi-metrizable;
(2) There is a pairwise weak base 1-function (1i, 1 j) for (X, τi, τ j) such that if yn ∈ 1i(n, x) and 1 j(n, xn)∩1i(n, yn) ,

∅ for all n ∈N, then the sequence {xn} τi-converges to x;
(3) There is a pairwise weak base 1-function (1i, 1 j) for (X, τi, τ j) such that if 1i(n, x) ∩ 1 j(n, yn) , ∅ and

1 j(n, xn) ∩ 1i(n, yn) , ∅ for all n ∈N, then the sequence {xn} τi-converges to x;
(4) There is a pairwise weak base 1-function (1i, 1 j) for (X, τi, τ j) such that if 1i(n, x) ∩ 1 j(n, yn) , ∅ and

xn ∈ 1i(n, yn) for all n ∈N, then the sequence {xn} τi-converges to x.

Proof. (1) ⇒ (2) Since (X, τi, τ j) is quasi-metrizable, there is a pairwise weak base 1-function (1i, 1 j) for
(X, τi, τ j) satisfying the condition (2) in Theorem 2.2. Suppose that yn ∈ 1i(n, x) and 1 j(n, xn) ∩ 1i(n, yn) , ∅
for all n ∈ N. Since {1i(n, x) : n ∈ N} is a local weak base at x for the space (X, τi), the sequence {yn}
τi-converges to x by yn ∈ 1i(n, x). Then the sequence {xn} τi-converges to x by 1 j(n, xn)∩ 1i(n, yn) , ∅ and (2)
in Theorem 2.2.

(2) ⇒ (3) Let (1i, 1 j) be a pairwise weak base 1-function satisfying the condition (2). Suppose that
1i(n, x)∩ 1 j(n, yn) , ∅ and 1 j(n, xn)∩ 1i(n, yn) , ∅ for all n ∈N. If the sequence {xn} does not τi-converge to x,
then there are a neighborhood U of x in X and a subsequence {xnl} of {xn} such that xnl < U for all l ∈N. Take
zl ∈ 1i(nl, x)∩1 j(nl, ynl ) for all l ∈N. Since zl ∈ 1i(nl, x) ⊂ 1i(l, x) and zl ∈ 1 j(nl, ynl )∩1i(l, zl) ⊂ 1 j(l, ynl )∩1i(l, zl),
the sequence {ynl } τi-converges to x by (2). By Lemma 2.3, there is a subsequence {ynlk

} of {ynl} such that
ynlk
∈ 1i(k, x) for all k ∈N. Since 1 j(k, xnlk

)∩ 1i(k, ynlk
) ⊃ 1 j(nlk , xnlk

)∩ 1i(nlk , ynlk
) , ∅, the subsequence {xnlk

} τi-
converges to x by (2). That is a contradiction with xnlk

< U for all k ∈N. Thus the sequence {xn} τi-converges
to x.

(3)⇒ (4) Obviously.

(4)⇒ (1) Let (1i, 1 j) be a pairwise weak base 1-function satisfying the condition (4). It is enough to show
the (1i, 1 j) satisfies the condition (4) in Theorem 2.2. Suppose that x ∈ 1 j(n, zn), 1i(n, zn) ∩ 1 j(n, yn) , ∅ and
xn ∈ 1i(n, yn) for all n ∈N. Take tn ∈ 1i(n, zn) ∩ 1 j(n, yn) for each n ∈N. Then the sequence {tn} τi-converges
to x by 1i(n, x) ∩ 1 j(n, zn) , ∅ and (4). By Lemma 2.3, there exists a subsequence {tnk } of {tn}with tnk ∈ 1i(k, x)
for all k ∈N. Then tnk ∈ 1i(k, x) ∩ 1 j(nk, ynk ) ⊂ 1i(k, x) ∩ 1 j(k, ynk ) and xnk ∈ 1i(nk, ynk ) ⊂ 1i(k, ynk ) for all k ∈N.
Again, by (4), the sequence {xnk } τi-converges to x. By a similar method in (2) ⇒ (3) above, the sequence
{xn} τi-converges to x.

Let k ∈N. Consider the following conditions about a pairwise weak base 1-function (1i, 1 j) for a bispace
(X, τi, τ j).

(pσ′) If x ∈ 12
j (n, xn) for all n ∈N, then {xn} τi-converges to x.

(pN′) For any A ⊂ X and each n ∈N, clτi A ⊂ ∪{1 j(n, x) : x ∈ A}.
(pS′) If {yn} τi-converges to x and yn ∈ 1 j(n, xn) for all n ∈N, then {xn} τi-converges to x.

Theorem 2.5. A T2-bispace (X, τi, τ j) is quasi-metrizable if and only if it has a pairwise weak base 1-function (1i, 1 j)
satisfying (pσ′) and (pN′).

Proof. Necessity. Let (X, τi, τ j) be a quasi-pseudo-metrizable bispace. Let 1i, 1 j be the functions defined by
the proof of (1)⇒ (2) in Theorem 2.2.

First, (pσ′) holds. Let x ∈ 12
j (n, xn) for all n ∈ N, then x ∈ 1 j(n, tn) and tn ∈ 1 j(n, xn). {tn} τi-converges to x

by the condition (2) of Theorem 2.2. Again by the condition (2) of Theorem 2.2, then {xn} τi-converges to x.
Secondly, (pN′) holds. Assume that there are a subset A ⊂ X and an m ∈N such that clτi A 1 ∪{1 j(m, y) :

y ∈ A}, then there exists a point x ∈ clτi A − ∪{1 j(m, y) : y ∈ A}. Since (X, τi) is first-countable, there is a
sequence {yn} ⊂ A such that {yn} τi-converges to x. For k ∈N and k > m, since 1i(k, x) is open in (X, τi), then
{yn : n > n0} ⊂ 1i(k, x) for some n0 ∈N.
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Because x < ∪{1 j(m, y) : y ∈ A}, then x < 1 j(m, yn) for any n ∈ N. Let k > m and n > max{m,n0}, then
yn ∈ 1i(k, x) and x < 1 j(m, yn). We have d(x, yn) < 1

2k <
1

2m and d(x, yn) > 1
2m , this is a contradiction. Therefore,

the condition (pN′) holds.
Sufficiency. Let (1i, 1 j) be a pairwise weak base 1-function for a bispace (X, τi, τ j) satisfying the conditions

(pσ′) and (pN′). For each x ∈ X and n ∈N, put

hi(n, x) = 1i(n, x) − clτi{y ∈ X : x < 1 j(n, y)}.

By (pN′), x < clτi{y ∈ X : x < 1 j(n, y)}, i.e.,

x ∈ 1i(n, x) − clτi{y ∈ X : x < 1 j(n, y)} = hi(n, x).

Hence (hi, h j) is a pairwise weak base 1-function for (X, τi, τ j) with the following property:

If y ∈ hi(n, x), then y ∈ 1i(n, x) and x ∈ 1 j(n, y).

Now, suppose that zn ∈ hi(n, x) ∩ h j(n, yn) and xn ∈ hi(n, yn) for all n ∈ N. Then zn ∈ 1i(n, x), x ∈
1 j(n, zn), zn ∈ 1 j(n, yn) and yn ∈ 1i(n, zn). It is obvious that x ∈ 12

j (n, yn). It follows from (pσ′) that the sequence
{yn} τi-converges to x. There is a subsequence {ynm } of {yn} such that ynm ∈ hi(m, x), then ynm ∈ 1i(m, x) and
x ∈ 1 j(m, ynm ) for all m ∈ N. Since xnm ∈ hi(m, ynm ), we have that xnm ∈ 1i(m, ynm ) and ynm ∈ 1 j(m, xnm ). Thus
x ∈ 12

j (m, xnm ) for all m ∈N. Again, by (pσ′), the sequence {xnm} τi-converges to x, and thus the sequence {xn}
τi-converges to x. The quasi-metrizability of the bispace (X, τi, τ j) now follows from (1)⇔ (4) of Theorem
2.4.

Corollary 2.6. A T2-bispace (X, τi, τ j) is quasi-metrizable if and only if it has a pairwise weak base 1-function (1i, 1 j)
satisfying (pS′) and (pN′).

Proof. Necessity is from the (2) of Theorem 2.2 and the necessity of Theorem 2.5.
Sufficiency. By Theorem 2.5, we only need to show that (pS′)⇒ (pσ′).
Let (1i, 1 j) be a pairwise weak base 1-function for (X, τi, τ j) satisfying (pS′). Let x ∈ 12

j (n, xn) for each
n ∈ N. There is tn ∈ 1 j(n, xn) such that x ∈ 1 j(n, tn) for each n ∈ N. It follows from (pS′) that the sequence
{tn} τi-converges to x, and the sequence {xn} τi-converges to x. Hence, (pS′)⇒ (pσ′).

The following result was obtained in [9].

Theorem 2.7. ([9]) A T1-bispace (X, τi, τ j) is quasi-metrizable if and only if it has a pairwise weak base 1-function
(1i, 1 j) satisfying that

(1) There exists an m ∈N such that x < clτi ∪ {1 j(m, y) : y ∈ X−U} for each x ∈ X and a τi-neighborhood U of x.
(2) For any Y ⊂ X and each n ∈N, clτi Y ⊂ ∪{clτi1

2
j (n, y) : y ∈ Y}.

By the similar method in the proof of Theorem 2.2 in [9], we can prove the following theorem.

Theorem 2.8. Let k > 2. A T1-bispace (X, τi, τ j) is quasi-metrizable if and only if it has a pairwise weak base
1-function (1i, 1 j) satisfying that

(1) There exists an m ∈N such that x < clτi (∪{1 j(m, y) : y ∈ X −U}) for each x ∈ X and τi-neighborhood U of x.
(2) For any Y ⊂ X and n ∈N, clτi Y ⊂ ∪{clτi1

k
j (n, y) : y ∈ Y}.

Remark 2.9. It is well known that a bispace is pairwise stratifiable if and only if it has a pairwise 1-
function satisfying (1) of Theorem 2.8 [8]. We may say that (2) of Theorem 2.8 give a difference between
quasi-metrizable and pairwise stratifiable spaces.

Assume that τ1 = τ2 = τ, a bispace (X, τ1, τ2) is a topological space (X, τ) and the quasi-metrizability of
bispaces is equivalent to the metrizability of topological spaces. Thus we have the following corollaries.
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Corollary 2.10. ([5, Theorem 6]) Let k > 2. A T1-space (X, τ) is metrizable if and only if it has a weak base
1-function 1 for X satisfying that

(1) For each x ∈ X and a neighborhood U of x, there exists an m ∈N such that

x < ∪{1(m, y) : y ∈ X −U}.
(2) For any Y ⊂ X and each n ∈N,

Y ⊂ ∪{1k(n, y) : y ∈ Y}.
Corollary 2.11. ([23, Theorem 2.3]) The following are equivalent for a T2-space (X, τ):

(1) X is metrizable;
(2) There is a weak base 1-function 1 for X such that if a sequence {yn} converges to x and 1(n, xn) ∩ 1(n, yn) , ∅

for all n ∈N, then the sequence {xn} converges to x;
(3) There is a weak base 1-function 1 for X such that if yn ∈ 1(n, x) and 1(n, xn)∩ 1(n, yn) , ∅ for all n ∈N, then

the sequence {xn} converges to x;
(4) There is a weak base 1-function 1 for X such that if 1(n, x) ∩ 1(n, yn) , ∅ and 1(n, xn) ∩ 1(n, yn) , ∅ for all

n ∈N, then the sequence {xn} converges to x;
(5) There is a weak base 1-function 1 for X such that if 1(n, x)∩ 1(n, yn) , ∅ and xn ∈ 1(n, yn) for all n ∈N, then

the sequence {xn} converges to x;
(6) There is a weak base 1-function 1 for X such that if x ∈ 1(n, zn), 1(n, zn) ∩ 1(n, yn) , ∅ and xn ∈ 1(n, yn) for

all n ∈N, then the sequence {xn} converges to x.

Corollary 2.12. ([22, Conditions (1) and (5) in Theorem 2.2]) A T1-space X is metrizable if and only if there is
weak base 1-function (i.e., a CWC-mapping) g for X satisfying that:

(I) For sequences {xn}, {yn} if the sequence {yn} converges to x and xn ∈ 1(n, yn) for all n ∈ N, then the sequence
{xn} converges to x.

(II) For sequences {xn}, {yn} if the sequence {yn} converges to x and yn ∈ 1(n, xn) for all n ∈N, then the sequence
{xn} converges to x.
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