
Filomat 27:2 (2013), 329–335
DOI (will be added later)

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Compact-valued continuous relations on TVS-cone metric spaces
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Abstract. This paper uses cones of topological vector spaces in place of cones of Banach spaces to investigate
relations on TVS-cone metric spaces. It is proved that if f is a compact-valued continuous relation on a
TVS-cone metric space X, then f n is a compact-valued continuous relation on X for each n ∈ N. This
result generalizes domains of compact-valued continuous relations from metric spaces to TVS-cone metric
spaces, and improves a result for compact-valued continuous relations by omitting “locally compactness”
of domains.

1. Introduction

Cone metric spaces were introduced and discussed by Huang and Zhang in [11]. In the past years, the
following question arouses mathematical scholar interest and many interesting results have been obtained
(see [2, 3, 8, 9, 11, 12, 15, 16, 18, 19], for example).

Question 1.1. In relevant results about metric spaces, can metric spaces be generalized to cone metric spaces?

As a positive answer for Question 1.1, Khani and Pourmahdian [12] proved that each cone metric space
is metrizable, which shows that some generalizations from metric spaces to cone metric spaces are trivial.
Moreover, Khani and Pourmahdian [12] pointed out: “However, considering certain topological groups in
place of Banach spaces may result in the construction of new spaces which are not in general metrizable.
This can serve as a topic for further studies”. Also, Kadelburg, Radenović and Rakočević [13] noted that:
“proper generalizations when passing from norm-valued cone metric spaces of [11] to TVS-valued cone
metric spaces can be obtained only in the case of nonnormal cones”, and discussed TVS-cone metric spaces
to develop “further the theory of topological vector space valued cone metric spaces (with nonnormal
cones)”. In fact, the notion of a TVS-cone metric space was first used by Beg, Abbas and Arshad in [4],
and it was proved that each TVS-cone metric space is metrizable by using the Minkowski functional under
assumption that the topological vector space is locally convex and Hausdorff (see [14, 17], for example).
In addition, many interesting results had been obtained for some nonnormal spaces in place of Banach
spaces (see [1, 4, 7, 8, 13, 14, 17], for example). Having gained some enlightenment from the above, we
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consider TVS-cone metric spaces in place of cone metric spaces to investigate relations on TVS-cone metric
spaces, and give a new result around compact-valued continuous relations on TVS-cone metric spaces.
This paper deals with mainly some non-topological properties (for example, TVS-metric properties) and
does not assume that the topological vector space is locally convex and Hausdorff, so some corresponding
results from the metric setting can not be applied directly in our investigations.

Recall that a relation f on a space X is a set-valued mapping f : X −→ P0(X), where P0(X) = {P ⊆ X :
P , ∅}, i.e., f (x) is a nonempty subset of X for each x ∈ X.

Chu and Park [6] obtained the following results for compact-valued continuous relations on metric
spaces.

Proposition 1.2. ([6]) Let f be a compact-valued continuous relation on a locally compact metric space X. Then for
each compact subset K of X, f (K) is a compact subset of X.

Proposition 1.3. ([6]) Let f be a compact-valued continuous relation on a locally compact metric space X. Then f n

is a compact-valued continuous relation on X for each n ∈N.

In this paper, we improve Proposition 1.2 and Proposition 1.3 by weakening “metric space X” to “TVS-
cone metric space X” and omitting “locally compact” for metric space X. Throughout this paper,N andR+

denote the set of all natural numbers and the set of all positive real numbers, respectively.

2. TVS-cone metric spaces

Definition 2.1. ([4]) Let E be a topological vector space. A subset P of E is called a topological vector space
cone (abbr. TVS-cone) if the following are satisfied.

(1) P is closed, P , ∅ and P , {0}.
(2) α, β ∈ P and a, b ∈ R+ =⇒ aα + bβ ∈ P.
(3) α,−α ∈ P =⇒ α = 0.

For r ∈ R+, α ∈ E and B ⊆ E, rB and α + B denote {rβ : β ∈ B} and {α + β : β ∈ B}, respectively.

Remark 2.2. Let P be a TVS-cone of a topological vector space E. Then 0 ∈ P − P◦, where P◦ denotes the

interior of P in E. In fact, pick α, β ∈ P, then
α + β

n
∈ P for each n ∈ N from Definition 2.1(2). Note that

{
α + β

n
} −→ 0. So 0 ∈ P because P is closed from Definition 2.1(1). On the other hand, pick γ ∈ E − {0}, then

{γ
n
} −→ 0 and {−γ

n
} −→ 0. If 0 ∈ P◦, then there is n ∈ N, such that

γ

n
,−γ

n
∈ P. By Definition 2.1(3),

γ

n
= 0.

This contradicts that γ , 0. So 0 < P◦.

Definition 2.3. ([4]) Let P be a TVS-cone of a topological vector space E. Some partial orderings ≤, < and
≪ on E with respect to P are defined as follows, respectively.

(1) α ≤ β if β − α ∈ P.
(2) α < β if α ≤ β and α , β.
(3) α≪ β if β − α ∈ P◦, where P◦ denotes the interior of P in E.

Remark 2.4. In this paper, for the sake of conveniences, we also use notations “≥”, “>” and “≫” on E with
respect to P. The meanings of these notations are clear and the following hold.

(1) α ≥ 0 if and only if α ∈ P.
(2) α≫ 0 if and only if α ∈ P◦.
(3) α − β≫ 0 if and only if α≫ β.
(4) α − β ≥ 0 if and only if α ≥ β.
(5) If α ≥ 0 and β ≥ 0, then aα + bβ ≥ 0 for all a, b ∈ R+.
(6) α≫ β =⇒ α > β =⇒ α ≥ β.
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Lemma 2.5. Let P be a TVS-cone of a topological vector space E. Then the following hold.
(1) If α≫ 0, then rα≫ 0 for each r ∈ R+.
(2) If α1 ≫ β1 and α2 ≥ β2, then α1 + α2 ≫ β1 + β2.
(3) If α≫ 0 and β≫ 0, then there is γ≫ 0 such that γ≪ α and γ≪ β.

Proof. (1) Let α ≫ 0, i.e., α ∈ P◦. Then there is an open neighborhood Bα of α in E such that Bα ⊆ P. If
r ∈ R+, then rBα ⊆ P from Definition 2.1(2). Note that rα ∈ rBα and rBα is an open subset of E. So rα ∈ P◦,
i.e. rα≫ 0.

(2) Let α1 ≫ β1 and α2 ≥ β2. Then α1 − β1 ≫ 0 and α2 − β2 ≥ 0, i.e., α1 − β1 ∈ P◦ and α2 − β2 ∈ P. So
there is an open neighborhood B of α1 − β1 in E such that B ⊆ P. Note that (α2 − β2) + B is an open subset
of E, and (α2 − β2) + (α1 − β1) ∈ (α2 − β2) + B ⊆ P from Definition 2.1(2). So (α2 − β2) + (α1 − β1) ∈ P◦, i.e.,
(α2 − β2) + (α1 − β1)≫ 0, hence (α1 + α2) − (β1 + β2)≫ 0. It follows that α1 + α2 ≫ β1 + β2.

(3) Let α ≫ 0 and β ≫ 0, i.e., α, β ∈ P◦. Then there is n1,n2 ∈ N such that α −
α + β

n
∈ P◦ for all n ≥ n1

and β−
α + β

n
∈ P◦ for all n ≥ n2. Put γ =

α + β

n0
, where n0 = max{n1,n2}. Then γ≫ 0 from the above (1) and

(2). It is clear that α − γ ∈ P◦ and β − γ ∈ P◦, i.e., α − γ≫ 0 and β − γ≫ 0. So γ≪ α and γ≪ β.

Definition 2.6. ([4]) Let X be a non-empty set and let E be a topological vector space equipped with partial
order ≤ given by an order cone P. A vector-valued function d : X × X −→ E is called a TVS-cone metric on
X, and (X, d) is called a TVS-cone metric space if the following are satisfied.

(1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x) for all x, y ∈ X.
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Remark 2.7. By Definition 2.6(1), the TVS-cone metric d : X×X −→ E on X can be replaced by d : X×X −→ P.

Proposition 2.8. Let (X, d) be a TVS-cone metric space. Put B = {B(x, ε) : x ∈ X and ε≫ 0}, where B(x, ε) = {y ∈
X : d(x, y)≪ ε} for each x ∈ X and each ε≫ 0. Then B is a base for some topology on X.

Proof. It is clear that X =
∪

B. Let z ∈ B(x, α)
∩

B(y, β), where B(x, α), B(y, β) ∈ B. Since z ∈ B(x, α),
d(x, z) ≪ α. Put γ1 = α − d(x, z), then γ1 ≫ 0. We claim that B(z, γ1) ⊆ B(x, α). In fact, if u ∈ B(z, γ1),
then d(z,u) ≪ γ1. It follows that d(x,u) ≤ d(x, z) + d(z,u) ≪ d(x, z) + γ1 = α, hence u ∈ B(x, α). By the
same way, we can obtain that there is γ2 ≫ 0 such that B(z, γ2) ⊆ B(y, β). Thus, there is γ ≫ 0 such that
γ ≪ γ1 and γ ≪ γ2 from Lemma 2.5(3). Let v ∈ B(z, γ), then d(z, v) ≪ γ ≪ γ1 and d(z, v) ≪ γ ≪ γ2,
so v ∈ B(z, γ1) ⊆ B(x, α) and v ∈ B(z, γ2) ⊆ B(y, β), and hence v ∈ B(x, α)

∩
B(y, β). This has proved that

B(z, γ) ⊆ B(x, α)
∩

B(y, β). Note that z ∈ B(z, γ) ∈ B. Consequently, B is a base for some topology on X. In
fact, put T = {U ⊆ X : there is B′ ⊆ B such that U =

∪
B′}, then T is a topology on X and B is a base for

T .

In this paper, we always suppose that a cone P is a TVS-cone of a topological vector space E and a
TVS-cone metric space (X, d) is a topological space with the topology T described in Proposition 2.8.

3. Relations on TVS-cone metric spaces

Throughout this section, we use the following brief notations

Notation 3.1. Let (X, d) be a TVS-cone metric space, f be a relation on (X, d) and D ⊆ X.
(1) f (D) =

∪{ f (x) : x ∈ D}.
(2) B(D, ε) =

∪{B(x, ε) : x ∈ D}.
(3) S f (D) = {x ∈ X : f (x) ⊆ D}.
(4) W f (D) = {x ∈ X : f (x)

∩
D , ∅}.
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Lemma 3.2. Let (X, d) be a TVS-cone metric space. If K ⊆ U with K compact in X and U open in X, then there is
ε≫ 0 such that B(K, ε) ⊆ U.

Proof. By Proposition 2.8, for each x ∈ K ⊆ U, there is ηx ≫ 0 such that B(x, ηx) ⊆ U. Put εx =
1
2
ηx, then

εx ≫ 0 from Lemma 2.5(1). Since {B(x, εx) : x ∈ K} is an open cover of K and K is compact, there is a finite
subset F of K such that {B(x, εx) : x ∈ F} covers K. By Lemma 2.5(3), there is ε ≫ 0 such that ε ≪ εx for
each x ∈ F. We claim that B(K, ε) ⊆ U. In fact, let u ∈ B(K, ε), then there is y ∈ K such that u ∈ B(y, ε),
i.e., d(u, y) ≪ ε. Furthermore, there is z ∈ F such that y ∈ B(z, εz), i.e., d(y, z) ≪ εz. By Lemma 2.5(2),
d(u, z) ≤ d(u, y) + d(y, z) ≪ ε + εz ≪ 2εz = ηz. It follows that u ∈ B(z, ηz) ⊆ U. This has proved that
B(K, ε) ⊆ U.

The following two definitions refer to [5, 6, 10].

Definition 3.3. Let f be a relation on a TVS-cone metric space (X, d) and x ∈ X.
(1) f is called upper semicontinuous at x if for each ε≫ 0, there is δ≫ 0 such that y ∈ B(x, δ) =⇒ f (y) ⊆

B( f (x), ε).
(2) f is called lower semicontinuous at x if for each ε≫ 0, there is δ≫ 0 such that y ∈ B(x, δ) =⇒ f (x) ⊆

B( f (y), ε).
(3) f is called continuous at x if f is both upper semicontinuous and lower semicontinuous at x.

Definition 3.4. Let f be a relation on a TVS-cone metric space (X, d).
(1) f is called continuous (resp. upper semicontinuous, lower semicontinuous) , if f is continuous (resp.

upper semicontinuous, lower semicontinuous) at each x ∈ X.
(2) f is called compact-valued (resp. closed-valued), if f (x) is a compact (resp. closed) subset of X for

each x ∈ X.
(3) f is called compact-set (resp. closed-set), if f (F) is a compact (resp. closed) subset of X for each

compact (resp. closed) subset F of X.

Theorem 3.5. Let f be a compact-valued relation on a TVS-cone metric space (X, d). Then the following hold.
(1) f is upper semicontinuous if and only if S f (U) is open in X for each open subset U of X.
(2) f is lower semicontinuous if and only if W f (U) is open in X for each open subset U of X.

Proof. (1) Necessity: Let f be upper semicontinuous. For each open subset U of X, let x ∈ S f (U), then
f (x) ⊆ U. Since f (x) is compact in X and U is open in X, there is ε ≫ 0 such that B( f (x), ε) ⊆ U by Lemma
3.2. Since f is upper semicontinuous at x, there is δ ≫ 0 such that y ∈ B(x, δ) implies f (y) ⊆ B( f (x), ε) ⊆ U,
and hence y ∈ B(x, δ) implies y ∈ S f (U). It follows that B(x, δ) ⊆ S f (U). This proves that S f (U) is open in X.

Sufficiency: Let S f (U) be open in X for each open subset U of X. For each x ∈ X and each ε≫ 0, B( f (x), ε)
is open in X, so S f (B( f (x), ε)) is open in X. Since f (x) ⊆ B( f (x), ε), x ∈ S f (B( f (x), ε)), and hence there is δ≫ 0
such that B(x, δ) ⊆ S f (B( f (x), ε)). It is not difficult to check that f (S f (B( f (x), ε))) ⊆ B( f (x), ε). So, for each
y ∈ B(x, δ), f (y) ⊆ f (B(x, δ)) ⊆ f (S f (B( f (x), ε))) ⊆ B( f (x), ε). This proves that f is upper semicontinuous at x.
Consequently, f is upper semicontinuous.

(2) Necessity: Let f be lower semicontinuous. For each open subset U of X, let x ∈ W f (U), then
f (x)
∩

U , ∅. Pick b ∈ f (x)
∩

U. Since U is open neighborhood of b in X, there is ε≫ 0 such that B(b, ε) ⊆ U.
f is lower semicontinuous at x, so there is δ ≫ 0 such that y ∈ B(x, δ) implies f (x) ⊆ B( f (y), ε). Thus, for
each y ∈ B(x, δ), b ∈ f (x) ⊆ B( f (y), ε), so there is c ∈ f (y) such that b ∈ B(c, ε), hence c ∈ B(b, ε) ⊆ U. It follows
that c ∈ f (y)

∩
U , ∅, and so y ∈ W f (U). This proves that B(x, δ) ⊆ W f (U). Consequently, W f (U) is open in

X.
Sufficiency: Let W f (U) be open in X for each open subset U of X. For each x ∈ X and each ε ≫ 0,

since f (x) is compact in X, there is a finite subset F of f (x) such that f (x) ⊆ ∪{B(a,
1
2
ε) : a ∈ F}. For each

a ∈ F, B(a,
1
2
ε) is open in X, so W f (B(a,

1
2
ε)) is open in X. Since a ∈ f (x)

∩
B(a,

1
2
ε) , ∅, x ∈ W f (B(a,

1
2
ε)).
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Put W =
∩{W f (B(a,

1
2
ε)) : a ∈ F}, then W is an open neighborhood of x. So there is δ ≫ 0 such that

B(x, δ) ⊆ W. Let y ∈ B(x, δ). It suffices to prove that f (x) ⊆ B( f (y), ε). Let b ∈ f (x), then there is a ∈ F such

that b ∈ B(a,
1
2
ε), and hence d(b, a) ≪ 1

2
ε. Since y ∈ B(x, δ) ⊆ W ⊆ W f (B(a,

1
2
ε)), and so f (y)

∩
B(a,

1
2
ε) , ∅.

Pick c ∈ f (y)
∩

B(a,
1
2
ε), then d(a, c) ≪ 1

2
ε. So d(b, c) ≤ d(b, a) + d(a, c) ≪ 1

2
ε +

1
2
ε = ε. It follows that

b ∈ B(c, ε) ⊆ B( f (y), ε). This proves that f (x) ⊆ B( f (y), ε).

Remark 3.6. By the proof of Theorem 3.5, we can omit “compact-valued” in Sufficiency of Theorem 3.5(1)
and Necessity of Theorem 3.5(2).

Corollary 3.7. A compact-valued relation f on a TVS-cone metric space (X, d) is continuous if and only if both S f (U)
and W f (U) are open in X for each open subset U of X.

Theorem 3.8. Let f be a compact-valued upper-semicontinuous relation on a TVS-cone metric space (X, d). If K is
a compact subset of X, then so is f (K).

Proof. Let K be a compact subset of X and let U be a family consisting of open subsets of X covering f (K).
For each x ∈ K, f (x) is compact in X, so there is a finite subfamily Ux of U such that Ux covers f (x). Put
Ux =

∪{U : U ∈ Ux}, then f (x) ⊆ Ux, hence x ∈ S f (Ux). Since f is upper-semicontinuous, S f (Ux) is open in X
from Theorem 3.5(1). Thus {S f (Ux) : x ∈ K} is a family consisting of open subsets of X covering K, so there
is a finite subset K′ of K such that {S f (Ux) : x ∈ K′} covers K. We claim that {Ux : x ∈ K′} covers f (K). In fact,
let y ∈ f (K), then there is z ∈ K such that y ∈ f (z). Furthermore, there is x ∈ K′ such that z ∈ S f (Ux). Thus
y ∈ f (z) ⊆ f (S f (Ux)) ⊆ Ux. So {Ux : x ∈ K′} covers f (K). Put U ′ = {U : U ∈ Ux and x ∈ K′}, then U ′ is a finite
subfamily of U and U ′ covers f (K). So f (K) is a compact subset of X.

Corollary 3.9. Let f be an upper semicontinuous relation on a compact TVS-cone metric space (X, d). The the
following are equivalent.

(1) f is compact-valued.
(2) f is closed-valued.
(3) f is compact-set.
(4) f is closed-set.

Proof. Compact subsets and closed subsets are equivalent in a compact space, so (1)⇐⇒ (2) and (3) ⇐⇒
(4). It is clear that (3) =⇒ (1). By Theorem 3.8, (1) =⇒ (3).

Remark 3.10. Theorem 3.8 improves Proposition 1.2 by weakening “metric space” to “TVS-cone metric
space”, weakening “continuous” to “upper-semicontinuous”, and omitting “locally compact” for the space
X.

For two relations f and 1 on a TVS-cone metric space (X, d), the composition of f with 1 is denoted by
1 f , that is, (1 f )(x) = 1( f (x)) for each x ∈ X.

Lemma 3.11. Let f and 1 be relations on a TVS-cone metric space (X, d), x ∈ X and D ⊆ X. Then the following hold.
(1) 1 f (x) ⊆ D⇐⇒ f (x) ⊆ S1(D).
(2) 1 f (x)

∩
D , ∅ ⇐⇒ f (x)

∩
W1(D) , ∅.

Proof. (1) Suppose that 1 f (x) ⊆ D. Let y ∈ f (x), then 1(y) ⊆ 1 f (x). Since 1 f (x) ⊆ D, 1(y) ⊆ D, hence y ∈ S1(D).
This proves that f (x) ⊆ S1(D). Conversely, suppose that f (x) ⊆ S1(D). Let y ∈ 1 f (x), then there is z ∈ f (x)
such that y ∈ 1(z). Since z ∈ f (x) ⊆ S1(D), 1(z) ⊆ D. It follows that y ∈ 1(z) ⊆ D. This proves that 1 f (x) ⊆ D.

(2) Let 1 f (x)
∩

D , ∅, then there is y ∈ 1 f (x)
∩

D, and so there is z ∈ f (x) such that y ∈ 1(z). Thus
y ∈ 1(z)

∩
D , ∅. It follows that z ∈ W1(D). This proves that z ∈ f (x)

∩
W1(D) , ∅. Conversely, let

f (x)
∩

W1(D) , ∅, then there is y ∈ f (x)
∩

W1(D), and hence 1(y)
∩

D , ∅. It follows that 1 f (x)
∩

D , ∅.
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Lemma 3.12. Let f and 1 be relations on a TVS-cone metric space (X, d), and let D ⊆ X. Then the following hold.
(1) S1 f (D) = S f (S1(D)).
(2) W1 f (D) =W f (W1(D)).

Proof. (1) By Lemma 3.11(1), S1 f (D) = {x ∈ X : 1 f (x) ⊆ D} = {x ∈ X : f (x) ⊆ S1(D)} = S f (S1(D)).
(2) By Lemma 3.11(2), W1 f (D) = {x ∈ X : 1 f (x)

∩
D , ∅} = {x ∈ X : f (x)

∩
W1(D) , ∅} =W f (W1(D)).

Theorem 3.13. Let f and 1 be compact-valued continuous relations on a TVS-cone metric space (X, d). Then 1 f is
compact-valued continuous.

Proof. For each x ∈ X, f (x) is a compact subset of X. Since 1 is compact-valued upper semicontinuous,
(1 f )(x) = 1( f (x)) is a compact subset of X by Theorem 3.8. So 1 f is compact-valued. Let U be an open
subset of X. Since 1 is compact-valued upper semicontinuous, S1(U) is an open subset of X by Theorem
3.5(1). furthermore, since f is compact-valued upper semicontinuous, S f (S1(U)) is an open subset of X. By
Lemma 3.12(1), S1 f (U) = S f (S1(D)) is an open subset of X. By a similar way, we can prove that W1 f (U) is
an open subset of X by Theorem 3.5(2) and Lemma 3.12(2). Consequently, 1 f is continuous from Corollary
3.7.

Corollary 3.14. Let f be a compact-valued continuous relation on a TVS-cone metric space (X, d). Then f n is
compact-valued continuous for each n ∈N.

Remark 3.15. Corollary 3.14 improves Proposition 1.3 by weakening “metric space” to “TVS-cone metric
space” and omitting “locally compact” for the space X.

The authors would like to thank the referee for reviewing this paper and offering many valuable
comments.
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