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In this paper, the remainders of topological and paratopological groups are discussed. Some
conditions are given for a topological group G such that G or its compactification bG is
separable and metrizable by the properties of the remainder bG \ G . Some properties are
obtained for a paratopological group G such that the remainder bG \ G is a p-space or
a Lindelöf space. They improve some results of A.V. Arhangel’skiı̌ (2005) [1] and F. Lin
(2011) [14], respectively, and also give partial answers to some questions posed by F. Lin
(2011) [14] and C. Liu (2009) [16].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

“A space” in this article stands for a Tychonoff topological space. A remainder of a space X is the space b X \ X , where
b X is a Hausdorff compactification of X [10].

An important question in the study of Hausdorff compactifications is when a Tychonoff space X has a Hausdorff com-
pactification with the remainder belonging to a given class of spaces. A famous classical result in this study is the following
theorem [12]:

M. Henriksen and J. Isbell’s theorem. A space X is of countable type if and only if the remainder in any (in some) compactification
of X is Lindelöf.

A paratopological group G is a group G with a topology such that the product map of G × G onto G associating x · y with
arbitrary x, y ∈ G is jointly continuous. If G is a paratopological group and the inverse map of G onto itself associating x−1

with arbitrary x ∈ G is continuous, then G is called a topological group.
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Recently, A.V. Arhangel’skiı̌ [3] proved that if, for a non-locally compact topological group X , the remainder Y = b X \ X of
X has a Gδ-diagonal or a point-countable base, then both X and Y are separable metrizable. Chuan Liu [16] systematically
investigated how the generalized metrizability properties of the remainder affect the metrizability of the group. Recall that
a space X has locally a property-Φ if for each point x ∈ X there exists an open neighborhood U (x) of x such that U (x)
has a property-Φ . In 2011, F. Lin [14] systematically studied which locally a property-Φ is needed to make the following
statement true:

Let G be a non-locally compact topological group and the remainder bG \ G have locally a property-Φ , then bG and G are separable
and metrizable.

In this paper, the following questions are considered and answered partially.

Question 1.1. ([14]) Let G be a non-locally compact topological group. If Y = bG \ G satisfies the following conditions (1)
and (2), are G and bG separable and metrizable?

(1) For each point y ∈ Y , there exists an open neighborhood U (y) of y such that every countably compact subset of U (y)

is a metrizable Gδ-subset of U (y);
(2) π -character1 of Y is countable.

Question 1.2. ([16]) Let G be a non-locally compact topological group, and bG \ G have a base of countable order. Are G and
bG separable and metrizable?

Question 1.3. ([16]) Let G be a non-locally compact topological group, and bG \ G have a σ -locally countable network. Are
G and bG separable and metrizable?

Question 1.4. ([16]) Let G be a non-locally compact topological group, and bG \ G be locally symmetrizable. Are G and bG
separable and metrizable?

The paper is organized as follows. In Section 2, the remainders of topological groups are discussed. It is proved that G
is separable and metrizable, and Y is a first-countable, Lindelöf p-space if G is a non-locally compact topological group
and the remainder Y = bG \ G satisfies the condition (1) in Question 1.1. Thus the condition (1) implies the condition (2)
in Question 1.1. Many results on remainders of topological groups can be obtained easily by it, and partial solutions of
Questions 1.2, 1.3 and 1.4 are given.

In Section 3, the remainders of paratopological groups are investigated. A series of results on remainders of paratopolog-
ical groups have been obtained. They show that the remainders of paratopological groups are much more sensitive to the
topological properties of paratopological groups than the remainders of topological spaces are in general.

Recall that a Lindelöf p-space is a preimage of a separable metrizable space under a perfect mapping.2 The following
theorem was proved in [1].

Lemma 1.5. ([1]) If X is a Lindelöf p-space, then every remainder of X is a Lindelöf p-space.

Remark 1.6. If G is a non-locally compact paratopological group, G is nowhere locally compact. Then Y = bG \ G is dense
in bG , i.e., bG is also a compactification of Y . By Henriksen and Isbell’s theorem and Lemma 1.5, the following statements
hold:

(1) Y is of countable type ⇔ G is Lindelöf;
(2) Y is a Lindelöf p-space ⇔ G is a Lindelöf p-space.

2. Remainders of topological groups

First, we consider the separable metrizability for a topological group G .
Recall that a space X is of countable type [10] if every compact subset of X is contained in a compact subspace F ⊂ X

such that F has a countable base of open neighborhoods in X . A space X is of subcountable type [5] if every compact subset
of X is contained in a compact Gδ-subset of X .

1 A π -base of a space at a point x of X is a family γ of non-empty open subsets of X such that every open neighborhood of x contains at least one
element of γ . Put πχ (x, X) = min{|γ |: γ is a π-base at x} + ω. Then the π -character of X is πχ (X) = sup{πχ (x, X): x ∈ X}.

2 A continuous mapping f of X onto Y is perfect if f is closed mapping such that f −1(y) is compact in X for each y ∈ Y .
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Clearly, every k-perfect space3 is of subcountable type. In [5], A.V. Arhangel’skiı̌ proved that every non-locally compact
topological group G with a Lindelöf k-perfect remainder Y in a compactification bG is separable metrizable, and Y is
separable and first-countable, while following from Lemma 2.1 we have Theorem 2.2, which gives a partial answer to
Question 1.1.

Lemma 2.1. ([5]) Suppose that G is a non-locally compact topological group with a remainder Y in some compactification bG of G
satisfying the following conditions:

(1) Every closed countably compact subspace of Y is locally metrizable; and
(2) Y is of subcountable type.

Then G is separable and metrizable.

Theorem 2.2. Let G be a non-locally compact topological group. If Y = bG \ G satisfies the condition (1) in Question 1.1, i.e., for each
point y ∈ Y , there exists an open neighborhood U (y) of y such that every countably compact subset of U (y) is a metrizable Gδ-subset
of U (y), then G is separable metrizable and Y is a first-countable, Lindelöf p-space.

Proof. Clearly, Y is locally k-perfect, so one can easily obtain that Y is k-perfect. Thus Y is of subcountable type, and by
Lemma 2.1 G is separable and metrizable. Hence, by Remark 1.6 Y is a Lindelöf p-space, and Y is first-countable. �

Next, we discuss the separable metrizability of bG for a topological group G . Let Φ be a topological property satisfying
(L) as follows:

(L1) every Lindelöf p-space X with property-Φ is metrizable;
(L2) every countably compact subset of X with property-Φ is a metrizable Gδ-subset in X ;
(L3) property-Φ is hereditary with respect to closed subspaces.

Since every countably compact metrizable space is compact, and every compact space is a Lindelöf p-space, the condition
(L2) in (L) above can be replaced by the following condition (L′

2):

(L′
2) every countably compact subset of X with property-Φ is a compact Gδ-subset in X .

Theorem 2.3. Let G be a non-locally compact topological group, and Y = bG \ G have locally a property-Φ satisfying (L). Then bG is
separable metrizable.

Proof. Since Y has locally a property-Φ satisfying (L), Y satisfies the condition (1) in Question 1.1, i.e., for each point y ∈ Y ,
there exists an open neighborhood U (y) of y such that every countably compact subset of U (y) is a metrizable Gδ-subset
of U (y). Thus G is separable metrizable and Y is a Lindelöf p-space by Theorem 2.2.

Let y ∈ Y . There exists an open neighborhood U (y) of y such that U (y)Y has the property-Φ by locally a property-Φ
satisfying (L).4 U (y)Y is a Lindelöf p-space as a closed subset of Y , thus U (y)Y is separable and metrizable by (L1), which
implies that Y is locally separable and locally metrizable.

Since Y is Lindelöf and locally metrizable, Y has a countable network.5 Clearly, G has a countable network as well, so
bG = G ∪ Y has a countable network. Therefore, bG is separable metrizable by bG being compact. �

Since G is a subspace of bG , it is obvious that G is also separable metrizable in Theorem 2.3. From Theorem 2.3 we can
obtain many results on remainders of topological groups. First, we recall some definitions.

A collection A of subsets of a space X is a p-meta-base [15] for X if for distinct points x, y ∈ X , there exists a finite
subfamily F ⊂ A such that x ∈ (

⋃
F )◦ ⊂ ⋃

F ⊂ X \ {y}.
A space X has a quasi-Gδ-diagonal [13] if there exists a sequence {Gn}n∈ω of families of open subsets of X such that⋂

n∈ω{st(x,Gn): st(x,Gn) 	= ∅} = {x} for each x ∈ X .
Recall that a collection B = ⋃

n∈ω Bn of open subsets of a space X is a δθ -base [11] if whenever x ∈ U with U open,
there exist an n ∈ ω and a B ∈ Bn such that (i) x ∈ B ⊂ U ; (ii) ord(x;Bn) � ω.

Let X be a topological space. X is called a c-semistratifiable space (abbr. CSS) [18] if for each compact subset K of X and
each n ∈ ω there is an open set G(n, K ) in X such that: (i)

⋂
n∈ω G(n, K ) = K ; (ii) G(n + 1, K ) ⊂ G(n, K ) for each n ∈ ω;

(iii) if for any compact subsets K , L of X with K ⊂ L, then G(n, K ) ⊂ G(n, L) for each n ∈ ω.
The results (1) and (4) of Corollary 2.4 improve [14, Theorems 2.5 and 2.13], respectively.

3 A space X is k-perfect [5] if every compact subset of X is a Gδ -set.
4 The closure of a subset A in a space Y is denoted by AY .
5 A family P of subsets of a space Y is a network of Y if y ∈ U with U open in Y there exists P ∈ P such that y ∈ P ⊂ U .
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Corollary 2.4. Let G be a non-locally compact topological group. Then bG is separable metrizable if the remainder bG \ G of G satisfies
one of the following conditions.

(1) locally a point-countable p-meta-base;
(2) locally a δθ -base [14];
(3) locally a quasi-Gδ-diagonal [14];
(4) locally a C S S-space.

Proof. Suppose that the conditions (1′)–(4′) are defined by dropping the condition “locally” in (1)–(4), respectively. It is
obvious that the topological properties in (1′)–(4′) are hereditary with respect to closed subspaces. Thus, according to
Theorem 2.3, it is enough to show the following two facts.

Fact 1. Every Lindelöf p-space satisfying one of the conditions (1′)–(4′) is metrizable.

Fact 2. Every countably compact subset in a space X satisfying one of the conditions (1′)–(4′) is a metrizable Gδ-subset
in X .

Indeed, Fact 1 was proved in [15, Theorem 3.1.8], [11, Corollary 8.3], [13, Corollary 3.6] and [8, Proposition 3.8], respec-
tively. Fact 2 was proved in [14, Lemma 2.3], [8, Proposition 2.1], [8, Proposition 2.3] and [8, Proposition 3.8], respectively. �

The following corollary gives partial answers to Questions 1.2 and 1.3, respectively.

Lemma 2.5. Let X have a σ -locally countable network. Then each compact subset of X is a metrizable Gδ-set.

Proof. Let P = ⋃
n∈ωPn be a network for X , where each Pn is locally countable in X . Since X is regular, we may assume

that each element of P is closed. Take an arbitrary compact subset F of X . It is clear that F is metrizable, since F has
a countable network. Fix n ∈ ω, for each x ∈ X , let Vn(x) be an open neighborhood of x such that Vn(x) meets at most
countably many elements of Pn . Put γn = {Vn(x): x ∈ X}. One can find a finite subcover γ ′

n ⊂ γn of F , and let Vn = ⋃
γ ′

n .
Put {P ∈Pn: P ∩ Vn 	= ∅, P ∩ F = ∅} = {Pn(i): i ∈ ω}.

Claim. F = ⋂
n,i∈ω(X \ Pn(i)) ∩ Vn.

Let Q = ⋂
n,i∈ω(X \ Pn(i)) ∩ Vn . Clearly, F ⊂ Q . Suppose x ∈ Q \ F . Since P is a network and F is compact, there exists

a P ∈ Pn for some n ∈ ω such that x ∈ P ⊂ X \ F . Then P = Pn(i) for some i ∈ ω. x /∈ X \ Pn(i), hence x /∈ Q . This is a
contradiction. Therefore, F is a Gδ-set in X . �
Lemma 2.6. ([8]) Every compact subset of a space with a BCO6 is a metrizable Gδ-subset.

Corollary 2.7. Let G be a non-locally compact topological group and Y = bG \ G. Then bG is separable metrizable if and only if every
countably compact subset of Y is compact, and Y satisfies one of the following conditions.

(1) locally a σ -locally countable network;
(2) locally a BCO.

Proof. If bG is separable metrizable, then Y is metrizable, and it is obvious that every countably compact subset of Y is
compact.

Conversely, suppose every countably compact subset of Y is compact. And the conditions (1′) and (2′) are denoted by
dropping the condition “locally” in (1) and (2), respectively. It is obvious that the topological properties in (1′) and (2′) are
hereditary with respect to closed subspaces. Thus, according to Theorem 2.3, it is enough to show the following two facts.

Fact 1. Every Lindelöf p-space satisfying one of the conditions (1′) and (2′) is metrizable.

Fact 2. Every compact subset in a space satisfying one of the conditions (1′) and (2′) is a metrizable Gδ-subset.

6 A space X is said to have a base of countable order (abbr. BCO) if there is a sequence {Bn} of bases for X such that whenever x ∈ Bn ∈ Bn and {Bn} is
decreasing (by set inclusion), then {Bn: n ∈ ω} is a base at x in X .
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Indeed, Fact 2 is obtained by Lemmas 2.5 and 2.6. As for Fact 1, if X is a Lindelöf p-space with a σ -locally countable
network, then X has a countable network, thus X is metrizable by [11, Corollaries 3.20, 4.7]. On the other hand, every
Lindelöf p-space with a BCO is metrizable by [11, Theorems 1.2 and 6.6]. �

Finally, we consider Question 1.4. Let X be a set and all non-negative real numbers be denoted by R+ . A function
d : X × X → R+ is a symmetric on the set X if, for each x, y ∈ X , (i) d(x, y) = 0 if and only if x = y; (ii) d(x, y) = d(y, x).
A space X is said to be symmetrizable if there is a symmetric d on X satisfying the following condition: U ⊂ X is open if
and only if for each x ∈ U there exists ε > 0 with B(x, ε) = {y ∈ X: d(x, y) < ε} ⊂ U .

Lemma 2.8. ([4]) Suppose that G is a topological group with a remainder Y of countable pseudocharacter. Then Y is bisequential, and
either G is metrizable and |Y | � 2ω , or Y is countably compact and first-countable.

Lemma 2.9. ([16]) Let G be a non-locally compact topological group, and Y = bG \ G be locally symmetrizable. Then bG is separable
and metrizable if π -character of Y is countable.

Theorem 2.10. Let G be a non-locally compact topological group, and Y = bG \ G be locally symmetrizable. Then bG is separable and
metrizable if each singleton of Y is a Gδ-subset in Y .

Proof. By Lemma 2.8, Y is bisequential. Hence, Y is Fréchet-Urysohn. Since Y is locally symmetrizable, it follows that Y is
first-countable. Therefore, by Lemma 2.9, bG is separable and metrizable. �
Corollary 2.11. Let G be a non-locally compact topological group, and Y = bG \ G be locally symmetrizable. Then bG is separable and
metrizable if Y satisfies one of the following conditions.

(1) Y is locally perfect;
(2) Y is locally Lindelöf ;
(3) Y is locally ω1-compact.

Lemma 2.12. ([6]) Let G be a paratopological group. Then G is of countable type if and only if there exists a non-empty compact subset
F of G such that F has a countable base of open neighborhoods in G.

Lemma 2.13. ([11, Lemma 9.12]) Every ω1-compact7 symmetric space is hereditary Lindelöf.

Corollary 2.14. Let G be a non-locally compact topological group, and Y = bG \ G be locally symmetrizable. Then bG is separable and
metrizable if there exists an isolated point in Y .

Proof. Let y be an isolated point in Y . Then there exists a Gδ-subset P in bG such that {y} = P ∩ Y and P ∩ G 	= ∅. Take a
sequence {Un} of open subsets in bG with P = ⋂

n∈ω Un . Fix a point g ∈ P \ {y}. There is an open subset Vn in bG such that
y /∈ Vn

bG , and g ∈ Vn+1 ⊂ Vn+1
bG ⊂ Vn ∩ Un+1 for each n ∈ ω. Put F = ⋂

n∈ω Vn . Clearly, F is a non-empty closed Gδ-subset
in bG with F ⊂ G . One can easily obtain that F has a countable base of open neighborhoods in bG by the compactness of
bG . Therefore F has a countable base of open neighborhoods in G as well. It is obvious that F is a compact subset of G .
Then G is of countable type by Lemma 2.12.

By Henriksen and Isbell’s theorem, Y is Lindelöf, thus Y is ω1-compact. Then Y is locally a hereditarily Lindelöf by
Lemma 2.13. Thus the statement directly follows from Corollary 2.11 �
3. Remainders of paratopological groups

In this section, we consider the remainders of paratopological groups and improve some results of A.V. Arhangel’skiı̌
in [1]. Recall that a space X is Ohio complete [1] if in each compactification b X of X there is a Gδ-subset Z such that X ⊂ Z
and each point y ∈ Z \ X is separated from X by a Gδ-subset of Z . A space X is a p-space if there exists a sequence {Un} of
families of open subsets of the Stone–Čech compactification β X such that

(1) each Un covers X for each n ∈ ω;
(2)

⋂
n∈ω st(x,Un) ⊂ X for each x ∈ X , where st(x,Un) = ⋃{U ∈ Un: x ∈ U }.

A space X has a Gδ-diagonal if the set � = {(x, x) ∈ X × X: x ∈ X} is a Gδ-subset in X × X .

7 A space X is ω1-compact if every closed discrete subset of X has cardinality less than ω1.
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Lemma 3.1. ([1]) Every Lindelöf space, every space with a Gδ-diagonal or every p-space is Ohio complete.

A.V. Arhangel’skiı̌ [6] characterized the spaces such that the remainders of paratopological groups are Ohio complete as
follows.

Lemma 3.2. ([6]) Let G be a paratopological group and Y = bG \ G. Then Y is Ohio complete if and only if G is σ -compact or a space
of countable type.

The Lindelöf remainder was characterized by Henriksen and Isbell’s theorem. We have other equivalent conditions for
paratopological groups as follows.

Theorem 3.3. Let G be a non-locally compact paratopological group and Y = bG \ G. Then the following are equivalent8:

(1) Y is σ -metacompact and Ohio complete;
(2) Y is metacompact and Ohio complete;
(3) Y is paracompact and Ohio complete;
(4) Y is Lindelöf ;
(5) G is of countable type.

Proof. (5) ⇒ (4) by Henriksen and Isbell’s theorem. (4) ⇒ (3) by Lemma 3.1. It is obvious that (3) ⇒ (2) ⇒ (1).
(1) ⇒ (5). Suppose that Y is σ -metacompact and Ohio complete. We may assume that G is σ -compact by Lemma 3.2.

Thus the Souslin number c(G) of G is countable [7, Corollary 5.7.12] and Y is Čech-complete.9 Since G is dense in bG , the
Souslin number c(bG) of bG is countable. Since G is a non-locally compact paratopological group, Y is dense in bG . Then
the Souslin number c(Y ) of Y is countable. In addition, every point-finite open collection in a Čech-complete space X with
c(X) � ω is countable [9, Proposition 8.3]. Thus, one can obtain that Y is Lindelöf by Y being σ -metacompact. Therefore
from Henriksen and Isbell’s theorem it follows that G is of countable type. �
Remark 3.4. Why do we consider the non-local compactness for G? If G is locally compact, then G is open in bG . Thus
Y = bG \ G is compact. Thus, “non-locally compact” in Theorem 3.3 can be dropped.

The following corollary is obtained by Remark 1.6, Lemma 3.1 and Theorem 3.3, which improves a result of A.V.
Arhangel’skiı̌ in [1, Theorem 4.9] as follows: if G is a non-locally compact topological group, then the remainder bG \ G
is a paracompact p-space if and only if G is a Lindelöf p-space.

Corollary 3.5. Let G be a non-locally compact paratopological group and Y = bG \ G. Then G is a Lindelöf p-space if and only if Y is
a Lindelöf (or σ -metacompact) p-space.

The following corollary is proved by A.V. Arhangel’skiı̌ in [1, Theorem 4.8] for topological groups.

Corollary 3.6. Suppose that G is a paratopological group such that the remainder bG \ G is a paracompact p-space. Then G is also a
paracompact p-space.

Proof. If G is locally compact, then G is a locally compact topological group [7, Theorem 2.3.12], which implies that G is a
paracompact p-space [7, Theorem 4.3.35]. If G is non-locally compact, G is a paracompact p-space by Corollary 3.5. �
Corollary 3.7. Let G be a non-locally compact paratopological group. Then G is separable metrizable if and only if bG \ G is a σ -
metacompact p-space and G has a Gδ-diagonal.

Proof. If G is separable metrizable, it is obvious that G has a Gδ-diagonal, and bG \ G is a σ -metacompact p-space by
Corollary 3.5. Conversely, if bG \ G is a σ -metacompact p-space and G has a Gδ-diagonal, G is a Lindelöf p-space by
Corollary 3.5. Since every Lindelöf p-space with a Gδ-diagonal is metrizable by [11, Corollaries 3.8 and 3.20], G is separable
metrizable. �

The following theorem is proved by A.V. Arhangel’skiı̌ in [1, Theorem 4.5] for topological groups.

8 A space X is metacompact (resp. σ -metacompact) [9] if every open cover of X has a point-finite (resp. σ -point-finite) open refinement.
9 A completely regular space X is Čech-complete if X is a Gδ -subset in some compactification of X .



Author's personal copy

654 L.-H. Xie, S. Lin / Topology and its Applications 160 (2013) 648–655

Theorem 3.8. Suppose that G is a non-locally compact paratopological group. Then the remainder Y = bG \ G is a p-space if and only
if G is σ -compact or a Lindelöf p-space.

Proof. Suppose Y is a p-space. By Lemmas 3.1 and 3.2, G is of countable type or σ -compact. If G is of countable type, Y is
Lindelöf by Henriksen and Isbell’s theorem, then G is a Lindelöf p-space by Remark 1.6.

Conversely, if G is σ -compact, then Y is Čech-complete and therefore, is a p-space. If G is a Lindelöf p-space, then Y is
a Lindelöf p-space by Lemma 1.5. �
Remark 3.9. “Non-locally compact” in Corollary 3.7 cannot be dropped. To see this, we can take any discrete topolog-
ical group G with uncountable cardinality. Let bG be the one-point compactification of G . It is clear that bG \ G is a
σ -metacompact p-space, but G is not separable. This example also shows that “non-locally compact” in Theorem 3.8 cannot
be dropped and the topological group G in [1, Corollary 4.11] must be non-locally compact, which corrects a little mistake
in [1].

Lemma 3.10. ([2]) If a paratopological group G has a countable π -base at some point in G, then G has a Gδ-diagonal.

Theorem 3.11. Let G be a non-locally compact paratopological group. Then G is separable and metrizable if the remainder bG \ G is a
σ -metacompact p-space with countable π -character.

Proof. Since G is a non-locally compact paratopological group, Y = bG \ G is not compact, thus Y is not countably compact.
There exists an infinite countable set A = {an: n ∈ ω} such that A is closed discrete in Y . Since bG is compact, then A has
an accumulation point c in G . For each n ∈ ω, choose {V (n,k): k ∈ ω} as a countable local π -base at an in Y . For each
n,k ∈ ω, take an open subset U (n,k) in bG with V (n,k) = U (n,k)∩ Y , and let W (n,k) = U (n,k)∩ G . It is not difficult to see
that {W (n,k): n,k ∈ ω} is a countable π -base at c in G , then G has a Gδ-diagonal by Lemma 3.10. Then G is separable and
metrizable by Corollary 3.7. �
Corollary 3.12. ([17]) Let G be a non-locally compact paratopological group. Then bG is separable and metrizable if the remainder
Y = bG \ G is metrizable.

Proof. G is separable and metrizable by Theorem 3.11. Therefore Y is separable and metrizable by Henriksen and Isbell’s
theorem. Thus, the compact space bG = G ∪ Y is also separable and metrizable. �

In the final, we consider that the remainder of a paratopological group has a Gδ-diagonal.

Theorem 3.13. Let G be a paratopological group and the remainder bG \ G have a Gδ-diagonal. Then G either is of countable type or
is a σ -compact space with a Gδ-diagonal.

Proof. If G is locally compact, then it is obvious that G is of countable type. Thus we assume that G is non-locally compact.
Since the remainder Y = bG \ G has a Gδ-diagonal, Y is Ohio complete by Lemma 3.1. Thus G either is of countable type

or is σ -compact by Lemma 3.2. We also assume that G is not of countable type. Then it is enough to show that G has a
Gδ-diagonal.

Claim 1. Y is first-countable.

If Y is not first-countable, there exists a point y0 ∈ Y such that {y0} is not a Gδ-subset of bG by the compactness of bG .
Thus one can easily take a sequence {Un} of open subsets of bG such that {y0} = Y ∩ ⋂

n∈ω Un and G ∩ ⋂
n∈ω Un 	= ∅. Take

a point x0 ∈ G ∩ ⋂
n∈ω Un . There exists a decreasing sequence {Vn} of open subsets of bG such that Vn+1

bG ⊂ Vn ⊂ Un for
each n ∈ ω and y0 /∈ V 0. Put F = ⋂

n∈ω Vn . Then F is compact and has a countable neighborhood base in G . Thus G is of
countable type by Lemma 2.12, which is a contradiction.

Claim 2. Y is not countably compact.

Indeed, since every countably compact space with a Gδ-diagonal is metrizable [11], if Y is countably compact, then Y is
compact. It is a contradiction with G being non-locally compact.

From Claims 1 and 2 it follows that G has a countable π -character by the same way of the proof of Theorem 3.11. Thus
G has a Gδ-diagonal by Lemma 3.10. �
Remark 3.14. The converse of Theorem 3.13 does not hold. Let Z be the set of all integers endowed with the discrete
topology. The topological group Z is of countable type and is a σ -compact space with a Gδ-diagonal, but the remainder
β Z \ Z has no a Gδ-diagonal.
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Question 3.15. Find a sufficient and necessary condition for a paratopological group G such that the remainder bG \ G has
a Gδ-diagonal.
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