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In this paper, we firstly discuss the question: Is l∞2 homeomorphic to a rectifiable space or
a paratopological group? And then, we mainly discuss locally compact rectifiable spaces,
and show that a locally compact rectifiable space with the Souslin property is σ -compact,
which gives an affirmative answer to A.V. Arhangel’skiı̌ and M.M. Choban’s question
[A.V. Arhangel’skiı̌, M.M. Choban, On remainders of rectifiable spaces, Topology Appl. 157
(2010) 789–799]. Next, we show that a rectifiable space X is strongly Fréchet–Urysohn if
and only if X is an α4-sequential space. Moreover, we discuss the metrizabilities of recti-
fiable spaces, which gives a partial answer for a question posed in F.C. Lin and R.X. Shen
(2011) [16]. Finally, we consider the remainders of rectifiable spaces, which improve some
results in A.V. Arhangel’skiı̌ (2005) [2], A.V. Arhangel’skiı̌ and M.M. Choban (2010) [5],
C. Liu (2009) [17].

Published by Elsevier B.V.

1. Introduction

Recall that a topological group G is a group G with a (Hausdorff) topology such that the product maps of G × G into G is
jointly continuous and the inverse map of G onto itself associating x−1 with arbitrary x ∈ G is continuous. A paratopological
group G is a group G with a topology such that the product maps of G × G into G is jointly continuous. A topological
space G is said to be a rectifiable space [9] provided that there are a surjective homeomorphism ϕ : G × G → G × G and an
element e ∈ G such that π1 ◦ ϕ = π1 and for every x ∈ G we have ϕ(x, x) = (x, e), where π1 : G × G → G is the projection
to the first coordinate. If G is a rectifiable space, then ϕ is called a rectification on G . It is well known that rectifiable
spaces and paratopological groups are all good generalizations of topological groups. In fact, for a topological group with
the neutral element e, then it is easy to see that the map ϕ(x, y) = (x, x−1 y) is a rectification on G . However, there exists
a paratopological group which is not a rectifiable space; Sorgenfrey line [11, Example 1.2.2] is such an example. Also, the
7-dimensional sphere S7 is rectifiable but not a topological group [23, §3]. Further, it is easy to see that paratopological
groups and rectifiable spaces are all homogeneous.
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By a remainder of a space X we understand the subspace b X \ X of a Hausdorff compactification b X of X .
In Section 3, we show that l∞2 is homeomorphic to no rectifiable space or paratopological group, where l∞2 is the sep-

arable Hilbert space, which extends a result of T. Banakh in [8]. In Section 4, we mainly discuss locally compact rectifiable
spaces, and show that a locally compact and separable rectifiable space is σ -compact, which give an affirmative answer
for a question of A.V. Arhangel’skiı̌ and M.M. Choban’s. Moreover, we prove that under the set theory assumption a locally
compact rectifiable space with the α4-properties is metrizable. In Section 5, we show that a rectifiable space X is strongly
Fréchet–Urysohn if and only if X is an α4-sequential space. In Section 6, we mainly discuss the metrizability of rectifiable
spaces which have a point-countable k-network. In Section 7, we mainly consider the question: When does a Tychonoff rec-
tifiable space G have a Hausdorff compactification bG with a remainder belonging to the class of separable and metrizable
spaces?

2. Preliminaries

In [20], E. Pentsak studied the topology of the direct limit X∞ = lim−→ Xn of the sequence

X ⊂ X × X ⊂ X × X × X ⊂ · · · ,
where (X, �) was a “nice” pointed space and Xn was identified with the subspace Xn × {�} of Xn+1.

A space X is called an S2-space (Arens’ space) if X = {∞} ∪ {xn: n ∈ N} ∪ {xn(m): m,n ∈ N} and the topology is defined as
follows: Each xn(m) is isolated; a basic neighborhood of xn is {xn} ∪ {xn(m): m > k} for some k ∈ N; a basic neighborhood
of ∞ is {∞} ∪ (

⋃{Vn: n > k}) for some k ∈ N, where Vn is a neighborhood of xn .
T. Banakh defined the space K [8].
Let

K = {
(0,0)

} ∪
{(

1

n
,

1

nm

)
: n,m ∈ N

}
⊂ R2.

The space K is non-locally compact and metrizable. Also, the space K is a minimal space with these properties in the
sense that each metrizable non-locally compact space contains a closed copy of K . For convenience, put x0 = (0,0) and
xn,m = ( 1

n , 1
nm ) for any n,m ∈ N.

The space X is called Sω if X is obtained by identifying all the limit points of ω many convergent sequences.
If A is a subset of a space X , then [A]seq denotes the sequential closure of A, i.e. the set of limits of convergent sequences

in A. Clearly, we have A ⊂ [A]seq . By induction on α ∈ ω1 + 1, we can define [A]α as follows: [A]0 = A, [A]α+1 = [[A]α]seq

and [A]α = ⋃{[A]β : β < α} for a limit order α. One can easily verify that [A]ω1+1 = [A]ω1 , and that a space X is se-
quential iff A = [A]ω1 for every A ⊂ X . For a sequential space X we define so(X), the sequential order of X , by so(X) =
min{α ∈ ω1 + 1: A = [A]α for each A ⊂ X}.

Definition 2.1. A space X is said to be Fréchet–Urysohn if, for each x ∈ A ⊂ X , there exists a sequence {xn} such that {xn}
converges to x and {xn: n ∈ N} ⊂ A. A space X is said to be strongly Fréchet–Urysohn if the following condition is satisfied

(SFU) For every x ∈ X and each sequence η = {An: n ∈ N} of subsets of X such that x ∈ ⋂
n∈N An , there is a sequence

ζ = {an: n ∈ N} in X converging to x and intersecting infinitely many members of η.

Obviously, a strongly Fréchet–Urysohn space is Fréchet–Urysohn. However, the space Sω is Fréchet–Urysohn and non-
strongly Fréchet–Urysohn.

Let X be a space. For P ⊂ X , the set P is a sequential neighborhood of x in X if every sequence converging to x is
eventually in P .

Definition 2.2. Let P = ⋃
x∈X Px be a cover of a space X such that for each x ∈ X , (a) if U , V ∈ Px , then W ⊂ U ∩ V for

some W ∈ Px; (b) the family Px is a network of x in X , i.e., x ∈ ⋂
Px , and if x ∈ U with U open in X , then P ⊂ U for

some P ∈ Px .
The family P is called a weak base for X [1] if, for every G ⊂ X , the set G must be open in X whenever for each x ∈ G

there exists P ∈ Px such that P ⊂ G . The space X is weakly first-countable if the family P is a weak base for X such that
each Px is countable.

The following theorem for the first time there was announced in [9], and the readers can see the proof in [10,13,22].

Theorem 2.3. ([9]) A topological space G is rectifiable if and only if there exists e ∈ G and two continuous maps p : G2 → G,
q : G2 → G such that for any x ∈ G, y ∈ G the next identities hold:

p
(
x,q(x, y)

) = q
(
x, p(x, y)

) = y, q(x, x) = e.
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In fact, we can assume that p = π2 ◦ ϕ−1 and q = π2 ◦ ϕ in Theorem 2.3. Fixed a point x ∈ G , then fx, gx : G → G
defined with fx(y) = p(x, y) and gx(y) = q(x, y), for each y ∈ G , are homeomorphism, respectively. We denote fx, gx with
p(x, G),q(x, G), respectively.

Let G be a rectifiable space, and let p be the multiplication on G . Further, we sometime write x · y instead of p(x, y) and
A · B instead of p(A, B) for any A, B ⊂ G . Therefore, q(x, y) is an element such that x · q(x, y) = y; since x · e = x · q(x, x) = x
and x · q(x, e) = e, it follows that e is a right neutral element for G and q(x, e) is a right inverse for x. Hence a rectifiable
space G is a topological algebraic system with operation p,q, 0-ary operation e and identities as above. It is easy to see that
this algebraic system need not to satisfy the associative law about the multiplication operation p. Clearly, every topological
loop is rectifiable.

All spaces are T1 and regular unless stated otherwise. The notation N denotes the set of all positive natural numbers.
The letter e denotes the neutral element of a group and the right neutral element of a rectifiable space, respectively. Readers
may refer to [3,11,12] for notations and terminology not explicitly given here.

3. l∞2 is homeomorphic to no rectifiable space or paratopological groups

In this section, by a modification of the proof of Theorem 1 in [8], we show that l∞2 is homeomorphic to no rectifiable
space or paratopological group.

We call a subset A of a rectifiable space (resp. paratopological group) G multiplicative if for any a,b ∈ A we have p(a,b) =
a · b ∈ A (resp. ab ∈ A).

We denote by conv(K ) = {(0,0)} ∪ {(x, y): 0 < y � x � 1}, where conv(K ) is the convex hull of K in R2.
In this section, we may assume that Sω = {y0} ∪ {yn,m = (n, 1

m ): n,m ∈ N}, where, for each n ∈ N, the sequence
{yn,m} → y0 as m → ∞. For each k ∈ N, let Vk = {y0} ∪ {yn,m: n � k, m ∈ N}. It is easy to see that Sω has the direct
limit topology with respect to the sequence V 1, V 2, . . . .

Theorem 3.1. Let X be a normal k-space. If X contains closed copies of Sω and K , then it is homeomorphic to no closed multiplicative
subset of a rectifiable space G such that y0 is the right neutral element of G.

Proof. Suppose not, let X be a closed multiplicative subset of a rectifiable space G . Now, we define a map f : K × Sω → X
with f (x, y) = p(x, y) for each (x, y) ∈ K × Sω . Then the following (1) and (2) hold:

(1) the map (π1, f ) : K × Sω → K × X is a closed embedding, where (π1, f )(x, y) = (x, f (x, y)) for each (x, y) ∈ K × Sω;
(2) the map g : K → X defined by g(x) = p(x, y0) = x (that is, g is the identity map), for each x ∈ K , is a closed embedding.

Indeed, the statement (2) is obvious. Moreover, it is easy to see that the map (π1, f ) : K × Sω → K × X is injective
continuous. We only show that the map (π1, f ) is relatively open. For each open subset U × V of K × Sω , we have
(π1, f )(U × V ) = ⋃{{x} × (x · V ): x ∈ U }, where U and V are open in K and Sω respectively. Since V is open in Sω , there
exists an open subset W of X such that W ∩ Sω = V . Therefore, we have

(π1, f )(U × V ) =
⋃{{x} × p(x, V ): x ∈ U

} = (
U × (U · W )

) ∩ (π1, f )(K × Sω).

Since p(U , W ) = ⋃{p(x, W ): x ∈ U } is open in X , the set U × p(U , W ) is open in K × X .
By the normality of X , let h : X → conv(K ) be a continuous extension of the map g−1 : g(K ) → K .
For each n,m ∈ N, let δn,m = 1

2nm(m+1)
, and put

Wn,m = conv(K ) ∩
((

1

n
− δn,m,

1

n
+ δn,m

)
×

(
1

nm
− δn,m,

1

nm
+ δn,m

))
.

Obviously, the collection {Wn,m: n,m ∈ N} consists of pairwise disjoint neighborhoods of the points xn,m in conv(K ). Since
yn,m → y0 as m → ∞ and h ◦ f (xn,m, y0) = h(p(xn,m, y0)) = xn,m = ( 1

n , 1
nm ), for any n,m ∈ N, there exists a k(n,m) ∈ N such

that h ◦ f (xn,m, yn,k(n,m)) ∈ Wn,m . Without loss of generality, we may assume that k(n,m + 1) > k(n,m) for any n,m ∈ N. Put

Z = {
p(xn,m, yn,k(n,m)): n,m ∈ N

}
.

For each n,m ∈ N, it follows from h ◦ f (x0, y0) /∈ Wn,m that f (x0, y0) /∈ Z .

Claim. Z is closed in X.

Since X is a k-space, it suffices to prove that for each compact subset F of X the intersection F ∩ Z is closed in F . Let

F1 = {x0} ∪ {
xn,m: h(F ) ∩ Wn,m 
= ∅, n,m ∈ N

}
and F2 = π2

(
(π1, f )−1(F1 × F )

)
.

Since h(F ) ⊂ conv(K ) is compact, the set F1 is compact. It follows from (1) that

(π1, f )−1(F × F1) ⊂ K × Sω
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is compact, and hence F2 is also compact. Because Sω = lim−→ Vn , there exists an n0 ∈ N such that F2 ⊂ Vn0 . Since F ∩
Z ⊂ p(F1, F2), we have F ∩ Z ⊂ {p(xn,m, yn,k(n,m)): n � n0, yn,m ∈ F1}. By the compactness of F1, it is easy to see that
{p(xn,m, yn,k(n,m)): n � n0, xn,m ∈ F1} is finite. Therefore, the set F ∩ Z is closed in F .

Since p(x0, y0) = x0 /∈ Z and p is continuous, it follows from Claim that there exist open neighborhoods V (x0) ⊂ K and
U (y0) ⊂ Sω of x0 and y0 respectively such that p(V (x0), U (y0)) ∩ Z = ∅. For every m ∈ N, we can fix an n ∈ N such that
xn,m ∈ V (x0). Since {yn,m}∞m=1 converges to y0 and {k(n,m)}∞m=1 is increasing, there is an m ∈ N such that yn,k(n,m) ∈ U (y0).
Then p(xn,m, yn,k(n,m)) ∈ p(V (x0), U (y0)) ∩ Z , which is a contradiction. �
Theorem 3.2. Let X be a normal k-space. If X contains closed copies of Sω and K , then it is homeomorphic to no closed multiplicative
subset of a paratopological group.

Proof. Suppose not, let X be a closed multiplicative subset of a rectifiable space G . Now, we define a map f : K × Sω → X
with f (x, y) = xy for each (x, y) ∈ K × Sω . Obviously, we can obtain the following (1) and (2):

(1) the map (π1, f ) : K × Sω → K × X is a closed embedding, where (π1, f )(x, y) = (x, xy) for each (x, y) ∈ K × Sω;
(2) the map g : K → X defined by g(x) = xy0, for each x ∈ K , is a closed embedding.

By the normality of X , let h : X → conv(K ) be a continuous extension of the map g−1 : g(K ) → K .
By the proof of Theorem 3.1, we can define the neighborhoods Wn,m of the points xn,m in conv(K ) and the closed set Z

with x0 y0 /∈ Z .
Since f (x0, y0) = x0 y0 /∈ Z , G is joint continuous and Z is closed, it follows that there exist open neighborhoods

V (x0) ⊂ K and U (y0) ⊂ Sω of x0 and y0 respectively such that (V (x0) × U (y0)) ∩ Z = ∅. For every m ∈ N, we can fix
an n ∈ N such that xn,m ∈ V (x0). Since {yn,m}∞m=1 converges to y0 and {k(n,m)}∞m=1 is increasing, there is an m ∈ N such
that yn,k(n,m) ∈ U (y0). Then xn,m yn,k(n,m) ∈ (V (x0) × U (y0)) ∩ Z , which is a contradiction. �

It is well known that a space X contains a closed copy of Sω , provided X can be written as a direct limit of a sequence

X1 ⊂ X2 ⊂ · · · ,
where each Xn is a closed metrizable subset of X , nowhere dense in Xn+1. In particular, the space l∞2 contains a topological
closed copy of Sω . Moreover, the space l∞2 is a normal k-space and contains a topological closed copy of K . Therefore, by
the topological homogeneity of l∞2 and Theorems 3.1 and 3.2, we have the following theorem.

Theorem 3.3. l∞2 is homeomorphic to no rectifiable space or a paratopological group.

Corollary 3.4. l∞2 is homeomorphic to no topological loop.

Corollary 3.5. ([8]) l∞2 is homeomorphic to no topological group.

4. Locally compact rectifiable spaces

In [5], A.V. Arhangel’skiı̌ and M.M. Choban posed the following question:

Question 4.1. ([5, Problem 5.10]) Is every rectifiable p-space with a countable Souslin number Lindelöf? What if we assume
the space to be separable? Separable and locally compact?

Now, we give an affirmative answer for Questions 4.1 of the case of separable and locally compact rectifiable spaces.

Lemma 4.2. Let G be a rectifiable space. If Y is a dense subset of G and U is an open neighborhood of the right neutral element e of G,
then G = Y · U .

Proof. Fix an arbitrary z ∈ G . Since q(z, z) = e ∈ U , there exists an open neighborhood V of e such that q(z · V , z) ⊂ U . Put
W = z · V . Then W is an open neighborhood of z in G . Since Y is a dense subset of G , we have W ∩ Y 
= ∅. Take a point
y ∈ W ∩ Y = z · V ∩ Y . Then y = z · v for some v ∈ V .

z = p
(
z · v,q(z · v, z)

) = p
(

y,q(z · v, z)
) ∈ p

(
y,q(z · V , z)

) ⊂ p(y, U ) = y · U ⊂ Y · U .

By the choice of arbitrary point of z, we have G = Y · U . �
It follows from Lemma 4.2, we have the following results, which give an answer for Question 4.1.
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Theorem 4.3. If G is a locally σ -compact1 rectifiable space with the Souslin property, then G is σ -compact.

Proof. Let G be a locally σ -compact rectifiable space with the Souslin property. For each α ∈ Γ , let Aα be the family
consisting of disjoint open subsets of G such that each element of Aα is covered by countably many compact subsets (since
G is locally σ -compact). {Aα,α ∈ Γ } is a set with partial order by inclusion. It is easy to see that every chain of {Aα,α ∈ Γ }
has an upper bound, by Zorn’s Lemma, there is a maximal element A ∈ {Aα,α ∈ Γ }. Since G has Souslin property, we have
|A| � ω, and hence we write A = {Ai}, Ai ⊂ ⋃{Ki, j}, where each Ki, j is a compact subset of G . By maximality of A,⋃{Ki, j} is a dense subset of G . Let U be an open neighborhood of e, which is covered by countably many compact subsets
{Hl}. By Lemma 4.2, G = (

⋃{Ki, j}) · (⋃{Hl}) = ⋃
(Ki, j · Hl), each Ki, j · Hl is compact, hence G is σ -compact. �

Corollary 4.4. If G is a locally compact and separable rectifiable space, then G is σ -compact (and, hence, Lindelöf ).

Corollary 4.5. If G is a locally Lindelöf and separable rectifiable space, then G is Lindelöf.

Let A be a subspace of a rectifiable space G . Then A is called a rectifiable subspace of G if we have p(A, A) ⊂ A and
q(A, A) ⊂ A.

Proposition 4.6. Let G be a rectifiable space. If H is a rectifiable subspace of G, then H is also a rectifiable subspace of G.

Proof. Take two points x, y ∈ H . Then we shall show that p(x, y) ∈ H and q(x, y) ∈ H .
Since x, y ∈ H , there exist two nets {xα}, {yβ} in H such that xα → x, yβ → y. Since p is continuous, p(x, y) is a cluster

point of {p(xα, yβ)} ⊂ H . Hence p(x, y) ∈ H .
Similarly, we can show that q(x, y) ∈ H . �

Lemma 4.7. Let G be a rectifiable space. If V is an open rectifiable subspace of G, then V is closed in G.

Proof. Suppose that V is non-closed in G . Then V \ V 
= ∅. Take a point x ∈ V \ V . Since q(x, x) = e ∈ V and the continuity
of q, there exists an open neighborhood W of e such that q(x · W , x) ⊂ V . Put U = x · W . Then U is an open neighborhood
of x, and hence U ∩ V 
= ∅ since x ∈ V . Therefore, there exist a ∈ W and b ∈ V such that x · a = b. Then we have

x = p
(
x · a,q(x · a, x)

) = p
(
b,q(x · a, x)

) ⊂ p(V , V ) = V ,

where p(V , V ) = V since V is a rectifiable subspace of G . However, the point x /∈ V , which is a contradiction. �
Theorem 4.8. If H is a locally compact rectifiable subspace of a rectifiable space G, then H is closed in G.

Proof. Let K = H . Then K is a rectifiable subspace of G by Proposition 4.6. Since H is a dense locally compact subspace
of K , it follows from [11, Theorem 3.3.9] that H is open in K . By Lemma 4.7, the set H is closed, and hence K = H . �

The following lemma maybe was proved somewhere.

Lemma 4.9. Let F be a compact subset of a space X and have a countable base {Un} with Un+1 ⊂ Un in X, and let H = ⋂
n Vn

(Vn+1 ⊂ Vn and each Vn is open in F ) is a compact Gδ-set of F . For n ∈ N, let Wn be an open set in X such that Vn = Wn ∩ F ,
Wn ⊂ Un, Wn+1 ⊂ Wn, then {Wn} is a countable base at H in X.

Proof. H = ⋂
n Wn = ⋂

n Wn . Suppose that {Wn} is not a countable base at H , then there is an open subset U of X such
that H ⊂ U and Wn \ U 
= ∅. By induction, choose xn ∈ Wn \ U with xi 
= x j if i 
= j. Since xn ∈ Un for each n ∈ N, then
{xn} has a cluster point x. In fact, if {xn} ∩ F is infinite, then {xn} has a cluster point in F since F is compact; if {xn} ∩ F
is finite, without loss generality, we assume {xn} ∩ F = ∅. Since F ⊂ X \ {xn} which is open in X , there is n0 ∈ N such that
F ⊂ Un ⊂ X \ {xn} for n > n0. This is a contradiction since xn ∈ Un . Therefore, we have x ∈ Wn for each n, then x ∈ H ⊂ U ,
and hence U contains infinitely many xn ’s, which is a contradiction. �

Next, we shall show that, for each locally compact rectifiable space, there exists a compact rectifiable subspace with a
countable character.

1 A space X is locally σ -compact if, for each point x of X , there exists an open neighborhood Ux of x such that Ux can be covered by a countably many
compact subsets of X .
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Lemma 4.10. Let G be a rectifiable space and F be a compact subset of G containing e and having a countable base {Un: n ∈ N} in G.
Assume that a sequence ζ = {Vn: n ∈ N} of open neighborhoods of e in G such that Vn+1 · Vn+1 ⊂ Vn ∩ Un and q(Vn+1, Vn+1) ⊂ Vn.
Then H = ⋂

n∈N Vn is a compact rectifiable subspace of G, H ⊂ F and ζ is a base for G at H.

Proof. Obviously, we have Vn+1 ⊂ Vn for each n ∈ N. We first claim that H is a compact rectifiable subspace of G .
Indeed, it is easy to see that H = ⋂

n∈N Vn = ⋂
n∈N Vn , and hence H is closed in G . For each x, y ∈ H , we have x, y ∈ Vn

for each n ∈ N. Then, for each n ∈ N, we have x · y ∈ Vn since Vn+1 · Vn+1 ⊂ Vn . Therefore, x · y ∈ H . Since q(Vn+1, Vn+1) ⊂ Vn ,
we have q(x, y) ∈ H . Therefore, H is a rectifiable closed subspace. Obviously, H ⊂ ⋂

n∈N Un = F . Thus H is compact. By
Lemma 4.9, ζ is a base for G at H . �
Proposition 4.11. Let G be a rectifiable space with point-countable type. If O is an open neighborhood of e, then there exists a compact
rectifiable subspace H of countable character in G satisfying H ⊂ O .

Proof. Since G is of point-countable type, there exists a compact subset of G having a countable base in G . By the homo-
geneity of G , we may assume that e ∈ F . Let {Un: n ∈ N} be a countable base for G at F . We define by induction a sequence
{Vn: n ∈ N} of open neighborhoods of e in G satisfying the following conditions:

(1) V 1 ⊂ O ;
(2) Vn+1 · Vn+1 ⊂ Vn ∩ Un for each n ∈ N;
(3) q(Vn+1, Vn+1) ⊂ Vn for each n ∈ N.

Put H = ⋂
n∈N Vn . Then H ⊂ O by (1). It follows from Lemma 4.10 that H is a compact rectifiable subspace of G and

that {Vn: n ∈ N} is a base of G at H . �
Since each locally compact space is of point-countable type, we have the following corollary.

Corollary 4.12. Let G be a locally compact rectifiable space. If O is an open neighborhood of e, then there exists a compact rectifiable
subspace H of countable character in G satisfying H ⊂ O .

Definition 4.13. Let X be a topological space. For i = 1,4 we say that X is an αi -space if for each countable family {Sn: n ∈ N}
of sequences converging to some point x ∈ X there is a sequence S converging to x such that:

(α1) Sn \ S is finite for all n ∈ N;
(α4) Sn ∩ S 
= ∅ for infinitely many n ∈ N.

Obviously, we have α1 ⇒ α4.
Let ωω denote the family of all functions from N into N. For f , g ∈ ωω we write f <∗ g if f (n) < g(n) for all but finitely

many n ∈ N. A family F is bounded if there is a g ∈ ωω such that f <∗ g for all f ∈ F , and is unbounded otherwise. We
denote by 
 the smallest cardinality of an unbounded family in ωω . It is easy to see that ω < 
 � c, where c denotes the
cardinality of the continuum.

Lemma 4.14. ([19]) For i ∈ {1,4}, Dτ is an αi -space if and only if τ < 
, where D is the discrete two-points space {0,1}.

Theorem 4.15. The following conditions are equivalent:

(1) Every compact rectifiable space with the α1-property is metrizable;
(2) Every locally compact rectifiable space with the α4-property is metrizable;
(3) 
 = ω1 .

Proof. The implication (2) ⇒ (1) is trivial.
(1) ⇒ (3). Since Dω1 is a non-metirzable compact group, so it cannot be an α1-space by (1). It follows from Lemma 4.14

that 
 � ω1. Since 
 > ω, it follows that 
 = ω1.
(3) ⇒ (2). Suppose that 
 = ω1, and that G is a locally compact α4-rectifiable space. Next, we shall prove that G is

metrizable. By Proposition 4.11, there exists a compact rectifiable subspace F of G which has a countable character at F
in G . We claim that F is metrizable. If not, as proved V.V. Uspenskij in [22,23], compact rectifiable spaces are dyadic, and
hence the space F contains a subspace homeomorphic to Dω1 . Since a subspace of an α4-space is an α4-space, the subspace
Dω1 is an α4-space. Then, it follows from Lemma 4.14 that ω1 < 
, which is a contradiction. Therefore, the space F is
metrizable.

Let {Un: n ∈ N} be a countable base of G at F , where Un+1 ⊂ Un for each n ∈ N. Let {Vn: n ∈ N} be a countable
neighborhoods base at the point e in F , where the closure clF Vn+1 ⊂ Vn for each n ∈ N. For each n ∈ N, there exists an



Author's personal copy

2096 F. Lin et al. / Topology and its Applications 159 (2012) 2090–2101

open subset Wn of G such that Vn = Wn ∩ F , Wn ⊂ Un and Wn+1 ⊂ Wn . Put γ = {Wn: n ∈ N}. By Lemma 4.9, the family γ
is a neighborhood base in G at point e. hence the space G is first-countable, and therefore, it is metrizable. �
Corollary 4.16. ([19]) The following conditions are equivalent:

(1) Every compact topological group with the α1-property is metrizable;
(2) Every locally compact topological group with the α4-property is metrizable;
(3) 
 = ω1 .

Question 4.17. Let G be a locally compact rectifiable α4-space. Is the space G an α1-space in ZFC?

5. Rectifiable α4-spaces

In this section, we first give a new proof of the properties of Fréchet–Urysohn and strongly Fréchet–Urysohn are coincide
in rectifiable spaces, which was proved in [16].

First, we recall a concept.

(AS) For any family {am,n: (m,n) ∈ N × N} ⊂ X with limn am,n = a ∈ X for each m ∈ N, it is possible to choose two strictly
increasing sequences {il}l∈N ⊂ N and { jl}l∈N ⊂ N such that liml ail, jl = a. Obviously, a space with AS-property is an
α4-space.

It is well known that a topological space X is a strongly Fréchet–Urysohn space if and only if it is Fréchet–Urysohn and
has the double sequence property (α4). Therefore, it is sufficient to show that a Fréchet–Urysohn rectifiable space has the
double sequence property (α4). Indeed, we have the following result.

Lemma 5.1. A Fréchet–Urysohn Hausdorff rectifiable space G satisfies (AS) and hence (α4) as well.

Proof. Assume that G is a non-discrete space. Let {am,n: (m,n) ∈ N × N} ⊂ X with limn am,n = e for each m ∈ N. Since G is
a Fréchet–Urysohn non-discrete space, there exists a sequence {sm}m ∈ N ⊂ G with limm sm = e such that sm 
= e for each
m ∈ N.

Put zm,k = q(sm,am,k+m) if q(sm,am,k+m) 
= e, and zm,k = sm if q(sm,am,k+m) = e. Let M = {zm,k: (m,k) ∈ N×N}. Obviously,
we have e /∈ M since sm 
= e for each m ∈ N. However, we have e ∈ M . Indeed, if M ∩ {sm: m ∈ N} is infinite, then it is easy
to see that e ∈ M . Therefore, suppose that M ∩ {sm: m ∈ N} is finite. Then there is an open neighborhood U of e such that
U ∩ M ∩ {sm: m ∈ N} = ∅. Let V be any open neighborhood of e with V ⊂ U . Hence there is an open neighborhood W of e
such that q(W , W ) ⊂ V . It follows from limm sm = e that there exists an m ∈ N such that sm ∈ W . Since limn am,n = e, there
exists a k ∈ N such that am,k+m ∈ W . Therefore, we have q(sm,am,k+m) = zm,k ∈ q(W , W ) ⊂ V ⊂ U .

Since e ∈ M and G is Fréchet–Urysohn, we can find a sequence {(ml,kl)}l∈N in G such that liml zml,kl = e.

Case 1. The sequence {kl}l∈N is bounded.

Without loss of generality, we may assume that kl = r for each l ∈ N for some r ∈ N. Since liml zml,kl = liml zml,r = e
and zml,r 
= e for each l ∈ N, we have liml ml = ∞. Without loss of generality, suppose that ml < ml+1 for each l ∈ N. Let
N1 = {l ∈ N: zml,r = sml }.

Subcase 1.1. The set N1 is infinite.

We denote N1 by {pi : i ∈ N}, where pi < pi+1 for each i ∈ N. Then it is easy to see that q(smpl
,ampl ,r+mpl

) = e for each
l ∈ N. Since liml smpl

= e, we have

ampl ,r+mpl
= p

(
smpl

,q(smpl
,ampl ,r+mpl

)
) = p(smpl

, e) = smpl
→ e as l → ∞.

Therefore, we can set il = mpl and jl = r + mpl for each l ∈ N. Then we get the strictly increasing sequences {il}l∈N and
{ jl}l∈N such that liml ail, jl = e.

Subcase 1.2. The set N1 is finite.

Let N2 = {l ∈ N: zml,r 
= sml }. Then N2 is infinite. We may denote N2 by {qi : i ∈ N}, where qi < qi+1 for each i ∈ N. It
follows that

zmql ,kql
= q(smql

,amql ,r+mql
) for each l ∈ N.



Author's personal copy

F. Lin et al. / Topology and its Applications 159 (2012) 2090–2101 2097

Since liml zmql ,kql
= e and liml sql = e, we have

amql ,r+mql
= p

(
sql ,q(smql

,amql ,r+mql
)
) = p(sql , zmql ,kql

) → p(e, e) = e as l → ∞.

Therefore, we can set il = mql and jl = r + mql for each l ∈ N. Then we get the strictly increasing sequences {il}l∈N and
{ jl}l∈N such that liml ail, jl = e.

Case 2. The sequence {kl}l∈N is unbounded.

Without loss of generality, we may assume that {kl}l∈N is a strictly increasing sequence.

Claim. liml ml = ∞.

If not, we may assume that, for each l ∈ N, ml = t for some t ∈ N. Since {kl}l∈N is strictly increasing, we have
liml at,t+kl = e. It follows from liml zt,kl = e that

at,t+kl = aml,ml+kl = p(sml , zml+kl ) = p(st , zt,kl ) → p(st , e) = st as l → ∞.

However, at,t+kl → e as l → ∞. Hence st = e, which is a contradiction.
It follows from Claim that there exists a strictly increasing sequence {nl}l∈N ⊂ N such that mni < mni+1 for each i ∈ N.

Therefore, we can set il = nl and jl = mnl + knl for each l ∈ N. Then we get the strictly increasing sequences {il}l∈N and
{ jl}l∈N such that liml ail, jl = e. �

It follows from Lemma 5.1, we have the following theorem, which was proved in [16].

Corollary 5.2. A rectifiable space G is Fréchet–Urysohn if and only if it is strongly Fréchet–Urysohn.

Lemma 5.3. Let G be an α4-rectifiable space. If G is a sequential space then G is strongly Fréchet–Urysohn.

Proof. It follows from Corollary 5.2 that it suffices to show that G is Fréchet–Urysohn. Suppose that G is non-Fréchet–

Urysohn. Then there exists a subset A of G such that ˆ̂A \ Â 
= ∅, where the set Â is all the limit points of convergent

sequences in A. Take a point x ∈ ˆ̂A \ Â. Without loss of generality, we may assume the x = e.

Since e ∈ ˆ̂A, there exists a sequence {xn}∞n=1 ⊂ Â such that the sequence {xn}∞n=1 converges to e. For each n ∈ N, there
exists a sequence {xnj}∞j=1 ⊂ A such that the sequence {xnj}∞j=1 converges to xn . Since G is a rectifiable space, the sequence
{q(xn, xnj)}∞j=1 converges to q(xn, xn) = e as j → ∞. Moreover, since G is an α4-rectifiable space, there are an increasing
sequence {nk}∞k=1 and a sequence { j(nk)}∞k=1 such that {q(xnk , xnk j(nk))}∞k=1 converges to e. Then we have

xnk j(nk) = p
(
xnk ,q(xnk , xnk j(nk))

) → p(e, e) = e as k → ∞.

However, we have e /∈ Â, which is a contradiction. �
It follows from Lemmas 5.1, 5.3 and Corollary 5.2 that we have the following theorem.

Theorem 5.4. Let G be a sequential rectifiable space. Then the following conditions are equivalent:

(1) The space G is an α4-space;
(2) The space G is an AS-space;
(3) The space G is Fréchet–Urysohn;
(4) The space G is strongly Fréchet–Urysohn.

Corollary 5.5. ([13]) If G is a weakly first-countable rectifiable space, then G is first-countable and hence it is metrizable.

Proof. It is well known that a weakly first-countable space is a sequential α4-space, by Lemma 5.3, G is a Fréchet–Urysohn
space, then G is first-countable since a Fréchet–Urysohn weakly first-countable space is first-countable. Hence G is metriz-
able. �
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6. Metrizabilities of rectifiable spaces

In [16], F.C. Lin and R.X. Shen posed the following question:

Question 6.1. ([16]) Is every sequential rectifiable space with a point-countable k-network2 a paracompact space?

In this section, we shall give a partial answer for Question 6.1. Moreover, we also discuss the metrizability of rectifiable
spaces.

Let X be a space and x ∈ X . The space X has property P (x, U ) [21] if U ⊂ X , {xi : i ∈ N} ⊂ U , xi → x as i → ∞ and
xi 
= x j if i 
= j, then there is Γ = {x(n,k): n,k ∈ N} ⊂ U such that x(n,k) → xn as k → ∞, t : N2 → Γ is a bijection, where
t(n,k) = x(n,k) and Γ ∪ {xi : i ∈ N} ∪ {x} is a closed subset of X homeomorphic to S2.

Lemma 6.2. ([21]) A sequential non-Fréchet–Urysohn space with a point-countable k-network contains a closed copy of S2 .

Lemma 6.3. ([16]) Let G be a rectifiable space. Then G contains a (closed) copy of Sω if and only if G has a (closed) copy of S2 .

Lemma 6.4. Let G be a non-Fréchet–Urysohn sequential rectifiable space with point-countable k-network. Then for any x ∈ G and any
open U ⊂ G, G has the property P (x, U ).

Proof. By Lemma 6.2, there exists a closed subset of G homeomorphic to S2. It follows from Lemma 6.3, G contains a
closed subset homeomorphic to Sω . Let Sω = {y(n,k): n,k ∈ N} ∪ {e}, where y(n,k) → e as k → ∞ and y(n,k) 
= y(l,m) if
(n,k) 
= (l,m). We may assume that Sω is a closed subset of G . Let U be open in G , {xi : i ∈ N} ⊂ U , xi → x as i → ∞ and
xi 
= x j if i 
= j. For any i,k ∈ N, put x(i,k) = p(xi, y(i,k)). Since y(i,k) → e as k → ∞, it follows that x(i,k) → p(xi, e) = xi
as k → ∞. For every i ∈ N, we can choose a ki ∈ N such that {x(i,k): i ∈ N, k � ki} ⊂ U and x(i,k) 
= x(i′,k′) if (i,k) 
= (i′,k′)
and k � ki,k′ � ki′ . Then {xi : i ∈ N} ∪ {x(i,k): i ∈ N,k � ki} ∪ {x} is a closed subset in G and homeomorphic to S2. If not,
there exists a sequence {x(i j,k j)}∞j=1 converging to some point b ∈ G such that i j 
= i j′ if j 
= j′ . Therefore, we have

y(i j,k j) = q
(
xi j , p

(
xi j , y(i j,k j)

)) = q
(
xi j , x(i j,k j)

) → q(x,b) as j → ∞.

However, the set {y(i j,k j): j ∈ N} is closed and discrete in G , which is a contradiction. �
Lemma 6.5. ([21]) Let X be a sequential space with a point-countable k-network such that for any x ∈ X and U ⊂ X the property
P (x, U ) holds. Then for any α < ω1, x ∈ X, U ⊂ X open in X the following property holds:

Q (α, x, U ): If {xi : i ∈ N} ⊂ U , xi → x as i → ∞ then there is Q ⊂ U such that Q is countable, Q \ {x} = U , x ∈ [Q ]α , x /∈ [Q ]β for
each β < α.

Lemma 6.6. ([16]) Let G be a sequential rectifiable space. If G has a point-countable k-network, then G is metrizable if and only if G
contains no closed copy of S2 .

Theorem 6.7. Let G be a sequential rectifiable space with a point-countable k-network. If so(G) < ω1 , then G is metrizable.

Proof. Suppose that so(G) = α.

Claim. The space G is Fréchet–Urysohn.

Suppose not, it follows from Lemmas 6.4 and 6.5 that G has property Q (α + 1, e, G). Clearly, since G has the property
Q (α + 1, e, G), we have so(G) � α + 1 > α, which is a contradiction.

It follows from the claim that G is a Fréchet–Urysohn rectifiable space, and hence G contains no closed copy of S2. Since
G is a Fréchet–Urysohn rectifiable space with a point-countable k-network, the space G is metrizable by Lemma 6.6. �
Proposition 6.8. Let P be a topological property that is productive and preserved by continuous maps. Then the following are equiva-
lent for a rectifiable space G.

(i) Every subset with the property P of G has countable pseudocharacter.
(ii) Every subset with the property P of G has regular Gδ-diagonal.3

2 Let P be a family of subsets of a space X . The family P is called a k-network [18] if whenever K is a compact subset of X and K ⊂ U ∈ τ (X), there
is a finite subfamily P ′ ⊂ P such that K ⊂ ⋃

P ′ ⊂ U .
3 A space X is said to have a regular Gδ -diagonal if the diagonal � = {(x, x): x ∈ X} can be represented as the intersection of the closures of a countable

family of open neighborhoods of � in X × X .
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Proof. (ii) → (i) obvious.
(i) → (ii). Let A be a subset of G and have the property P . Since q : G × G → G is continuous and the property P

is productive and preserved by continuous maps, then q(A × A) = B is a subset of G and B has the property P . Then
e ∈ B since q(x, x) = e. Therefore, e is a Gδ-set of B , let {Un: n ∈ N} be a family of countable open subsets with e ∈ Un and
Un+1 ⊂ Un . Then � = {(x, x): x ∈ A} = ⋂

n∈N q−1(Un) = ⋂
n∈N q−1(Un). In fact, let (x, y) ∈ ⋂

n∈N q−1(Un). For each n ∈ N, we
have (x, y) ∈ q−1(Un), and hence q(x, y) ∈ Un , which follows that π2(ϕ(x, y)) ∈ Un , π2(x, y′) ∈ Un , where ϕ(x, y) = (x, y′)
and y′ ∈ Un for each n ∈ N. Therefore, y′ = e. Since ϕ(x, x) = e, ϕ(x, y) = e and ϕ is one-to-one, we have x = y. Therefore
� = ⋂

n∈N q−1(Un). Since q−1(Un+1) ⊂ q−1(Un+1) ⊂ q−1(Un), then we can see that A has a regular Gδ-diagonal. �
It is well known that a countably compact (compact) space with a Gδ-diagonal is metrizable, we have the following.

Corollary 6.9. The following are equivalent for a rectifiable space G.

(i) Every compact (countably compact) subset is first-countable.
(ii) Every compact (countably compact) subset is metrizable.

Corollary 6.10. Let G be a rectifiable space of countable pseudocharacter. Then G has a regular Gδ-diagonal.

7. Compactifications of rectifiable spaces

In this section, we assume that all spaces are Tychonoff.
Note that a rectifiable space is metrizable if its π -character is countable [13], by the same proof of [17, Lemma 2], we

can prove the following.

Lemma 7.1. Let G be a non-locally compact rectifiable space. If for each y ∈ Y = bG \ G, there exists an open neighborhood U (y) of y
such that every countably compact subset of U (y) is metrizable and πχ(U (y)) � ω, then G is metrizable and locally separable.

A space X is called having the property (∗): if the cardinality of X is Ulam non-measure, then X is weakly HN-complete.4

A paracompact space has the property (∗) since a paracompact space with Ulam non-measurable cardinality is HN-complete
[6,11], and hence it is weakly HN-complete.

Proposition 7.2. Let G be a non-locally compact rectifiable space with property (∗). If for each y ∈ Y = bG \ G, there exists an open
neighborhood U (y) of y such that (i) every compact subset of U (y) is a Gδ-subset of U (y); (ii) every countably compact or Lindelöf
p-subspace of U (y) is metrizable. Then G,bG are separable and metrizable.

Proof. From condition (ii), we can see that Y is not locally countably compact, otherwise G is closed in bG and is compact.
By [5, Theorem 3.1], Y is pseudocompact or Lindelöf.

Case 1. The space Y is pseudocompact. Then Y is first-countable since each singleton of Y is a Gδ-set. Since Y is not locally
countably compact, the rectifiable space G is locally separable and metrizable by Lemma 7.1. Y is Lindelöf [14] since G is of
countable type. Therefore, Y is compact, and hence G is locally compact, which is a contradiction.

Case 2. The space Y is Lindelöf. Since Y is a space of countable pseudocharacter, it follows that the cardinality of Y is Ulam
non-measurable [6]. The space G is not locally compact, then G is nowhere locally compact since G is homogeneous. It
follows that G is a remainder of Y , so the cardinality of G is also Ulam non-measurable [6]. Then G is weakly HN-complete.
By [4, Theorem 4], each Gδ-point of Y is a point of bisequentiality of Y , it follows that πχ(Y ) � ω. Therefore, G is locally
separable and metrizable by Lemma 7.1. We write G = ⊕

α∈A Gα , where Gα is a separable metrizable subset for each α ∈ A.
Let η = {Gα : α ∈ A}, and let F be the set of all points of bG at which η is not locally finite. Since η is discrete in X . Then
F ⊂ bG \ G . It is easy to see that F is compact, we can find finitely many closed neighborhoods that satisfy (ii) to cover F ,
hence F is separable and metrizable, thus F has a countable network. Put M = Y \ F . For each point y ∈ M , there is an
open neighborhood O y satisfying (ii) in bG such that O y ∩ F = ∅. Since η is discrete, the set O y meets at most finitely
many Gα . Let L = ⋃{Gα : Gα ∩ O y 
= ∅}. Then L is separable metrizable. It follows that L \ L is a remainder of L, and hence
it is a Lindelöf p-space by [2, Theorem 2.1]. ClY (O y) ⊂ L \ L, then ClY (O y) is a Lindelöf p-space, hence it is separable and
metrizable and Y \ F is locally separable metrizable. Since F is compact, there are finite many {U (yi): i � k} that satisfy (i)
and cover F . Moreover, since each compact subset of U (yi)(i � k) is a Gδ-set, the set F is a Gδ-set in

⋃{U (yi): i � k}. We
write F = ⋂

Vn with Vn open in Y and ClY (Vn+1) ⊂ Vn . Let K1 = Y \ V 1, Kn = Cl(Vn−1) \ Vn (n > 1). Since Y is Lindelöf

4 A space X is weakly HN-complete if the remainder Z of X in the Čech–Stone compactification β X of X is a space of point-countable type.
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and Kn is closed in Y , each Kn is Lindelöf and locally separable metrizable. Therefore, Kn has a countable base for each n.
Since Y = F ∪ (

⋃{Kn: n ∈ N}), it follows that Y has a countable network. Then c(Y ) � ω, hence c(G) � ω. Since G is a
metrizable space with countable Souslin number, the space G is separable and metrizable. It follows that bG is separable
and metrizable since G and Y both have countable networks. �

Recall that a space X has a quasi-Gδ-diagonal provided there is a sequence {G(n): n ∈ N} of collections of open sets with
property that, given distinct points x, y ∈ X , there is some n with x ∈ st(x,G(n)) ⊂ X \ {y}. Obviously, “X has a Gδ-diagonal”
implies “X has a quasi-Gδ-diagonal”.

Theorem 7.3. Let G be a non-locally compact, paracompact rectifiable space, and Y = bG \ G have locally quasi-Gδ-diagonal. Then G
and bG are separable and metrizable.

Proof. By [7, Proposition 2.3], for y ∈ Y , there exists an open neighborhood U (y) such that each compact subset of U (y)

is a Gδ-set and every countably compact subset of U (y) is metrizable. Moreover, every Lindelöf p-subspace of U (y) is
metrizable by [15, Corollary 3.6]. Then G and bG are separable and metrizable by Proposition 7.2. �
Corollary 7.4. ([5]) Let G be a non-locally compact, paracompact rectifiable space, and Y = bG \ G have a Gδ-diagonal. Then G and
bG are separable and metrizable.

Proposition 7.5. Let G be a non-locally compact rectifiable space. If for each y ∈ Y = bG \ G, there exists an open neighborhood U (y)

of y such that (i) πχ(U (y)) � ω; (ii) every countably compact or Lindelöf p-subspace of U (y) is metrizable; (iii) every compact
subset of U (y) is a Gδ-set of U (y). Then G,bG are separable and metrizable.

Proof. By Lemma 7.1, G is metrizable and locally separable. Similar to the proof of Proposition 7.2, G and bG are separable
and metrizable. �

A space with point-countable base satisfies (i), (ii) [12, Corollary 7.11(ii)] and (iii) in Proposition 7.5.

Corollary 7.6. Let G be a non-locally compact rectifiable space, and Y = bG \ G have locally point-countable base. Then G and bG are
separable and metrizable.

By [7, Proposition 2.1] and [12, Corollary 8.3(ii)], a space with a δθ -base5 satisfies (i), (ii) and (iii) in Proposition 7.5.

Corollary 7.7. Let G be a non-locally compact rectifiable space, and Y = bG \ G have locally δθ -base. Then G and bG are separable
and metrizable.

By [12, Corollary 10.7(ii), Theorem 10.6], a γ -space6 satisfies (i), (ii) and (iii) in Proposition 7.5.

Corollary 7.8. Let G be a non-locally compact rectifiable space, and Y = bG \ G be a locally γ -space. Then G and bG are separable
and metrizable.
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