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A Mapping Theorem On sn-metrizable Spaces
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Abstract: A space is called an sn-metrizable space if it is # regului space with a o-
locally finite sn-network. In this paper an expardable preperty of k-semistritifiable spaces is
discussed, it is shown that sn-metrizability is preserved by closed sequence-covering mappings,
and some related examples of mapping preoerties on sn-metrizable spaces are given.
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0 Introduction

In this paper all spaces are regular and 7Tj, all mappings are continuous and onto. Every
metric space is a g-metrizable space, and every g-metrizable spabe is an sn-metrizale space. sn-
metrizable spaces inherit some mapping properties from metric spaces or g-metrizable spacest®l,
It is well-known that metrizability is preserved by open and closed mappings. Every open map-
ping of metric spaces is sequence-covering(®l. After Yan Pengfei, Lin Shou and Jiang Shoulil*9]

5 showed

proved metrizability is preserved by closed sequence-covering mappings, Liu Chuan!
that g-metrizability is also preserved by closed sequence-covering mappings, which gives an af-
firmative answer to the question 3.4.5 in [4]. In this paper it is shown that sn-metrizability is
preserved by closed sequence-covering mappings, which improves some related mapping theo-

rems.

1 Some Lemmas

First, we discuss some generalized metric properties with respect to sn-metrizable spaces.
Recalled some related concepts. Refer to (4] for terms which are not defined here.

Definition 1.1[7) A space X is said to be a k-semistratifiable space if for each open subset
U of X there is a sequence {F(n,U)}nen of closed subsets of X such that

(1) U = Upen F(n, V)

(2) If V C U, then F(n,V) C F(n,U);

(3) If a compact subset K C U, then K C F(m,U) for some m € N.

The correspondence U — {F(n,U)}nen is said to be a k-semistratification for the space X.
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Let X be a space. For P C X, P is a sequential neighborhood of z in X if every sequence
converging to z is eventually in P. P is a sequentially open subset of X if P is a sequential
neighborhood of z in X for each z € P. P is a sequentially closed subset of X if X \ P is
sequentially open. X is said to be a sequential spacel?! if each sequentially open subset is open
in X.

Let P be a family of subsets of a space X. P is discrete in X if there is a neighborhood U of
z in X such that U meets at most some element of P for each x € X. P is closure-preserving in
X if UP’ = U{P: P € P'} for each P’ C P. P is s-closure-preserving in X if UP’ is sequential
closed in X for each P’ C P. P is s-discrete in X if P is disjoint and s-closire-preserving in X.
A subset D of X is s-discrete if {{z} : z € D} is s-discrete in X Gbvicusly, a discrete(resp.
closure-preserving) family of closed subsets of X is s-discicte(rssp. s-closure-preserving).

Lemma 1.2 Let X be a k-semistratifiable space. Then for cach subset W of X there is a
sequence {H(n, W)},en of closed suisets of X siuch thai

(1) Hn,W) C H(n + {,W) C W,

(2) ¥V C W, then Hn, V) C H(n, W);

(3) If W 1s a sequeatial neighborhood of z, then every sequence converging to z is eventually
in H{m, W) ior some m € N:

(4) If {Gq : @ € A} is a disjoint family of subsets of X and n € N, then {H(n,G,) : o € A}
is a discrete family in X.

Proof Let U — {F(n,U)}.cn be a k-semistratification for X. We can assume that each
F(n,U) C F(n+1,U). For each n € N,z € X, define that g(n,z) = X \ F(n, X \ {z}), then
g(n,z) is open in X and z € g(n + 1,z) C g(n,z). Foreachn € NNW C X, put H(n,W) =
X\ U:EGX\W g(n,z), then H(n, W) is closed in X and satisfies the conditions (1) and (2).

Let W be a sequential neighborhood of z in X and a sequence {z,} converges to z. If
(3) is not hold, then for each i € N, there is z,, € X \ H(i,W), thus there is y; € X \ W
such that z,, € g(i,y:). Let U be an open neighborhood of . There are k, m € N such that
{Tn, 11>k} € F(m,U), thus y; € U for each i > max{k, m}, hence the sequence {y;} converges
to z, a contradiction because W is a sequential neighborhood of z.

Let {G, : @ € A} be a disjoint family of subsets of X and n € N. For each = € X, take
V=X\H(nU{G, : a € Aand z € G,}), then V is an open neighborhood of z in X and
VN H(n,Ga) =0if z € Ga. Hence {H(n,G,) : @ € A} is a discrete family of subsets of X.

Lemma 1.3 Let X be a k-semistratifiable space. Then each s-discrete subset of X has
an s-discrete extension of sequential neighborhoods in X.

Proof Let X be a k-semistratifiable space, and W — {H(n, W)},.en a correspondence of
X satisfying all conditions in Lemma 1.2.

Let {zo - a € A} be an s-discrete subset of X. We shall prove that there is an s-discrete
family {W, : @ € A} such that each W, is a sequential neighborhood of z, in X. For each o € A,
let Lo = {zg: 8 € A\{a}}, Ga = Upen(H(n, X\ Lo) \ H(n, X \ {z4})). Then {G, : a € A}
is a disjoint family of subsets of X. We shall first prove that G, is a sequential neighborhood of
z, for each o € A.
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Let S be a sequence converging to some x,, in X. Since L, is sequential closed and z,, & Lq,
S is eventually in H(m, X \ L,) for some m € N by Lemma 1.2, and z, ¢ H(m, X \ {za}), so
we can assume that S is eventually in H(m, X \ La) \ H(m, X \ {zo}) C Gq, hence G, is a
sequential neighborhood of z,,.

For each n € Nya € A, z, € H(n,X \ {zo}). By the regularity, there is an open subset
Va(n) such that z, € Vo(n) C Vo(n) € X \ H(n, X \ {za}). Put Fy(n) = H(n,Gs) N Va(n),
Wo = U,en Fa(n). Then W, is a sequential neighborhood of z,. In fact, if S is a sequence
converging to z, in X, S is eventually in H(m,G,) for some m € N by Lemina 1.2, and S is
eventually in V,(m), thus S is eventually in Fy(m) C W,.

Let W = {W, : « € A}. Then W is a disjoint faumly because of each W, C Go. To
complete the proof of the Lemma, it suffices to show that W is an s-closure-preserving family,
i. e, Upear Wa is sequential closed in X for each £/ C A. Let S be a sequence converging to
T & Ugea Wa. Then 2 & {24 . « € A'}, S is eventually in H(m, X \ {zo : @ € A’} for some
m €N, and H(in, X \{zy : @ 2 A'}) N Fa(n) C H(m, X \ {za}) N Va(n) = 0 for each a € A’
and n > m. By Lemma 1.2, {H(n,Gy) : @ € A} is a discrete family in X for each n € N, so
{Fa(n) : @ € A} is a discrete family of closed subsets of X. Put E(m,A') = Uyear nem Fa(n)-
Then E(m,A’) is closed and z ¢ E(m,A’), thus S is eventually in X \ E(m,A’). Hence S is
eventually in X \ (J,cas Wa, and J,cp Wa is sequential closed in X.

Remark 1.4 A locally compact Moore space can not be of the expandable property in
Lemma 1.3. For example, the well-known Gillman-Jerison space ¥(N) = NU A (see [4]), where
A is an almost disjoint and maximal family of N. The A is a discrete closed subspace, it has not
any s-discrete extension of sequential neighborhoods in 1(N).

Lemma 1.54 Let f: X — Y be a closed mapping. Let K be a countably compact subset
of Y, and let S = {z, : n € N} be a sequence in f~'(K) such that f(zm) # f(zn) if m # n. If
each point of X is a Gs-set, then there exists a convergent subsequence of S.

Let f: X — Y be a mapping. f is a sequence-covering mapping® if L is a convergent
sequence in Y, there is a convergent sequence M in X such that f(M) = L. A perfect mapping
of a metric space may not be sequence-covering. For example, let X = ({0} U {51; tn €
Nhe({otu{x -1:neN}),Y ={0}u{}:neN}. X,Y are endowed with the subspace
topology of real line R, and let f : X — Y be the obvious mapping. Then f is a non-sequence-

covering, perfect mapping.

2 sn-metrizable Spaces

Call a subspace of a space X a fan(at a point z € X) if it consists of a point z, and a
countably infinite family of disjoint sequences converging to z. Call a subset of a fan a diagonal
if it is a sequence meeting infinitely many of the sequence converging to = and converges to some
point in the fan. A space X is an ay-space if every fan at x of X has a diagonal converging to =
(see [4]).

Theorem 2.1 Let f : X — Y be a closed sequence-covering mapping, and X a k-
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semistratifiable space. If X is an ay4-space, so does Y.

Proof If Y is not an as-space, there is a fan {y} U {ygi(n) : i.n € N} at some y in ¥’
without a diagonal converging to y, where each y;(n) — y as 1 — 0. For each k € N, let
Ly = {yi(n) : i € Nyn < k}. Then Ly is a sequence converging to y. Let M) be a sequence of
X converging to ux € f~(y) with f(Mg) = Lk, we rewrite My = {z;(n,k) : 1 € N,n < k} with
each f(zi(n, k)) = yi(n).

Case 1 {uy : k € N} is finite.

There are a ko € N and an infinite subset N’ of N such that My — ug, for each k € N’, then
{ury} U {zi(k, k) : i € N,k € N'} is a fan at ug, in X. Thus it has a diageua! converging to u,
because X is an ay-space, so the fan {y} U {yi(n) : 4,n € N} has a diagonal converging to y. a
contradiction.

Case 2 {uy : k € N} has a non-trivizi convergent seqience in X.

Without loss of generality, we assurae that ue — u € f~'(y) as k — oc. Let {U,,} be a
sequence of open subsets of X with. Uny1 C Unm, and {u} = ey Um- Fix n,m € N, there is
a ky, > n such that uy,, € Uy, because the sequence {ux} converges to u, there is an ¢, € N
such that x; (7. km) € Um because the sequence {z;(n, kn)}; converges to uy,, . We can assume
that each im < 4my1. Then f(zi, (n,km)) = yi,.(n). Since f is closed, any subsequence of
the sequence {z;,, (n,km)}m has a convergent subsequence in X by Lemma 1.5, and u is the
unique accumulation of the sequence {; , (n, km)}m, thus =, (n,km) — u as m — oc. Hence
{u} U {z;,, (n,km) : n,m € N} is a fan at u in X, so it has a diagonal converging to u, a
contradiction.

Case 3 {uy : k € N} has not any non-trivial convergent sequence in X.

Then {ug : k € N} is s-discrete in X. By Lemma 1.3, there is an s-discrete family {Wy : k €
N} such that each Wy is a sequential neighborhood of uy. Since {z;(1,k)}: converges uy, there
is an iy € N such that z;, (1,k) € W. We can assume that each ix < ix11, then {f(z, (1,k))}
is a subsequence of {y;(1)}, thus {z;, (1,k)} has a convergent subsequence by Lemma 1.5. a
contradiction.

Definition 2.2 Let P = J,.x Pz be a cover of a space X such that for each z € X.

(1) P, is a network of z in X:

(2) fU,V € Py, then W CUNYV for some W € P,.

P is called a weak basel') for X if whenever G C X satisfying for each z € G there is P € P,
with P C G, then G is open in X: P is called an sn-network!¥l for X if each element of P,
is a sequential neighberhood of z in X for each x € X. A space X is called a g-metrizable
space¥) (resp. an sn-metrizable space®®) if it has a o-locally finite weak base(resp. sn-network).

Let P be a family of subsets of a space X. P is called a cs-network® for X if whenever a
sequence {x,} converges to x € U with U open in X there exists a P € P such that {z,} is
eventually in P and P C U. A space X is called an R-space if it has a o-locally finite cs-network.

Remark 2.3 For a space X, bases = weak bases = sn-networks = cs-networks!4l. Tt is
known that

{1) Metric spaces <> g-metrizable spaces + Fréchet spaces®":
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(2) g-metrizable spaces ¢ sn-metrizable spaces + sequential spaces!3l:

(3) sn-metrizable spaces < N-spaces + a4—spaces[4);

(4) R-spaces > spaces with a o-hereditarily closure-preserving cs-network(!1;

(5) R-spaces = k-semistratifiable spaces!”.

Theorem 2.4  sn-metrizability is preserved by closed sequence-covering mappings.

Proof Let f: X — Y be a closed sequence-covering mapping, here X is an sn-metrizable
space. Let B be a o-locally finite sn-network for X. Put P = {f(B) : B € B}. Then P
is a o-hereditarily closure-preserving cs-network for Y because f is a closed sequence-covering
mapping. Thus Y is an R-space. By Theorem 2.1, Y is an as-space. Thas ¥ is an en-metrizable
space.

Rremark 2.5 Metric spaces or N-spaces are not preserved by closed mappings!¥, and
g-metrizable spaces or sn-metrizable spaces are not creserved by perfect mappings!®. N-spaces
are preserved by closed seguence-ccivering mappings by the proof of Theorem 2.4.

Corollary %.6145"  Metrizability or g-metrizability is preserved by closed sequence-covering
mappings

Proof Let f: X — Y be a closed sequence-covering mapping. Suppose that X is a
metrizable space(resp. g-metrizable space). Then Y is an sn-metrizable space by Theorem 2.4.
And Y is a Fréchet space(resp. sequential space) because f is closed, thus Y is a metrizable
space(resp. g-metrizable space).

In the final, some related counterexamples of mapping properties on sn-metrizable spaces
are given.

Remark 2.7 There is a closed sequence-covering mapping of a metric space which is not
open. Let X = ({0}u{i:ne N ({0}U{s neN}), ¥V = {0}u{::neN} XY are
endowed with the subspace topology of R. Let f: X - -4 be the obvious mapping. Then f is a
non-open, closed sequence-covering mapping.

Remark 2.8 It has been shown that every closed sequence-covering mapping of metric
spaces is almost open!'®. A mapping f : X — Y is said to be almost open if for each y € ¥
there is a x € X such that the image of each neighborhood of z in X under f is a neighborhood
of y in Y. There is a perfect sequence-covering mapping of an sn-metrizable space which is not
almost open. Let X; and X, be respectively subspaces NU {p1} and NU{p,} of the Stone-Cech
compactification SN, here p;,ps € SN\ N. Let X = X; & X5. Then each {z} is sequentially
open in X because X has not any non-trivial convergent sequence, thus {{z} : 2 € X} is a
countable sn-network for X, so X is an sn-metrizable space. Put A = {p1, pz}. Let Y be the
quotient space X/A, and g : X — Y the quotient mapping. Then q is a perfect mapping. ¢ is
sequence-covering because each convergent sequence in Y is trivial. Since ¢(X1) and ¢(X3) are
not a neighborhood of g(A) in Y, it is easy check that g is not almost-open.

Remark 2.9 It is well-known that suppose X is a metric space and f : X — Y is a closed
mapping, then Y is a metric space if and only if each df(y) is compact(Hanai-Morita-Stone
Theorem!¥). Metrizability can not be replaced by sn-metrizability in the result. In fact, let So

and S, denote respectively the Arens’ space and sequential fan!¥l. Then S, is a perfect image



620 1 ¥ i3 # 35%

of sn-metrizable space Sz, and S,, is not an sn-metrizable space. On the other hand, let X be a
subspace of the Stone-Cech compactification SN with N C X and |X \ N| = Ro. Then a family
{{z} : z € X} is a countable sn-network for X, thus X is an sn-metrizable space. Define a
natural quotient mapping g : X — % with C = X \ N. Then gq is closed and the quotient space
X/C is a metrizable space because it is homeomorphic to the subspace {0} U {2 : n € N} of R.

But 9¢~1([C]) = C is not compact in X.

Remark 2.10 Liu Chuan!® has shown that a space is metrizable if and only if its every
perfect image is g-metrizable, which gives an affirmative answer to a questicn posed by A.
Arhangel’ skii in Ohio University topology seminar. But the result is not beld if g-metrizability
is replaced by sn-metrizability. In fact, let X be the subspaces N U {p} of the Stone-Cech
compactification SN, here p € BN\ N. Then X is au sn-metrizablie space and every perfect
image of X is sn-metrizable because every compact subset ot X is finite and sn-metrizability is
preserved by closed finite-t5-one mappings.
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