A Mapping Theorem On sn-metrizable Spaces

LIN Shou

(1. Dept. of Math., Zhangzhou Normal University, Zhangzhou, Fujian, 363000, P. R. China; 2. Dept. of Math., Ningde Teachers College, Ningde, Fujian, 352100, P. R. China)

Abstract: A space is called an sn-metrizable space if it is a regular space with a σ -locally finite sn-network. In this paper an expandable property of k-semistritifiable spaces is discussed, it is shown that sn-metrizability is preserved by closed sequence-covering mappings, and some related examples of mapping properties on sn-metrizable spaces are given.

Key words: k-semistratifiable spaces; sn-metrizable spaces; α_4 -spaces; sequence-covering mappings; closed mappings

MR(1991) Subject Classification: 54C10; 54E40; 54D55 / CLC number: O189.1 Document code: A Article ID: 1000-0917(2006)05-0615-06

0 Introduction

In this paper all spaces are regular and T_1 , all mappings are continuous and onto. Every metric space is a g-metrizable space, and every g-metrizable space is an sn-metrizable space. sn-metrizable spaces inherit some mapping properties from metric spaces or g-metrizable spaces^[3]. It is well-known that metrizability is preserved by open and closed mappings. Every open mapping of metric spaces is sequence-covering^[8]. After Yan Pengfei, Lin Shou and Jiang Shouli^[10] proved metrizability is preserved by closed sequence-covering mappings, Liu Chuan^[5] showed that g-metrizability is also preserved by closed sequence-covering mappings, which gives an affirmative answer to the question 3.4.5 in [4]. In this paper it is shown that sn-metrizability is preserved by closed sequence-covering mappings, which improves some related mapping theorems.

1 Some Lemmas

First, we discuss some generalized metric properties with respect to sn-metrizable spaces. Recalled some related concepts. Refer to [4] for terms which are not defined here.

Definition 1.1^[7] A space X is said to be a k-semistratifiable space if for each open subset U of X there is a sequence $\{F(n,U)\}_{n\in\mathbb{N}}$ of closed subsets of X such that

- (1) $U = \bigcup_{n \in \mathbb{N}} F(n, U);$
- (2) If $V \subset U$, then $F(n, V) \subset F(n, U)$;
- (3) If a compact subset $K \subset U$, then $K \subset F(m, U)$ for some $m \in \mathbb{N}$.

The correspondence $U \to \{F(n,U)\}_{n \in \mathbb{N}}$ is said to be a *k-semistratification* for the space X.

Received date: 2004-12-13.

Foundation item: Supported by the NSFC(No. 10271026, No. 10571151).

E-mail: linshou@public.ndptt.fj.cn

Let X be a space. For $P \subset X$, P is a sequential neighborhood of x in X if every sequence converging to x is eventually in P. P is a sequentially open subset of X if P is a sequential neighborhood of x in X for each $x \in P$. P is a sequentially closed subset of X if $X \setminus P$ is sequentially open. X is said to be a sequential space^[2] if each sequentially open subset is open in X.

Let \mathcal{P} be a family of subsets of a space X. \mathcal{P} is discrete in X if there is a neighborhood U of x in X such that U meets at most some element of \mathcal{P} for each $x \in X$. \mathcal{P} is closure-preserving in X if $\overline{\cup \mathcal{P}'} = \cup \{\overline{P} : P \in \mathcal{P}'\}$ for each $\mathcal{P}' \subset \mathcal{P}$. \mathcal{P} is s-closure-preserving in X if $\cup \mathcal{P}'$ is sequential closed in X for each $\mathcal{P}' \subset \mathcal{P}$. \mathcal{P} is s-discrete in X if \mathcal{P} is disjoint and s-closure-preserving in X. A subset D of X is s-discrete if $\{\{x\} : x \in D\}$ is s-discrete in X. Obviously, a discrete (resp. closure-preserving) family of closed subsets of X is s-discrete (resp. s-closure-preserving).

Lemma 1.2 Let X be a k-semistratifiable space. Then for each subset W of X there is a sequence $\{H(n,W)\}_{n\in\mathbb{N}}$ of closed subsets of X such that

- (1) $H(n, W) \subset H(n+1, W) \subset W$;
- (2) If $V \subset W$, then $H(n,V) \subset H(n,W)$:
- (3) If W is a sequential neighborhood of x, then every sequence converging to x is eventually in H(m, W) for some $m \in \mathbb{N}$:
- (4) If $\{G_{\alpha} : \alpha \in \Lambda\}$ is a disjoint family of subsets of X and $n \in \mathbb{N}$, then $\{H(n, G_{\alpha}) : \alpha \in \Lambda\}$ is a discrete family in X.

Proof Let $U \to \{F(n,U)\}_{n \in \mathbb{N}}$ be a k-semistratification for X. We can assume that each $F(n,U) \subset F(n+1,U)$. For each $n \in \mathbb{N}, x \in X$, define that $g(n,x) = X \setminus F(n,X \setminus \{x\})$, then g(n,x) is open in X and $x \in g(n+1,x) \subset g(n,x)$. For each $n \in \mathbb{N}, W \subset X$, put $H(n,W) = X \setminus \bigcup_{x \in X \setminus W} g(n,x)$, then H(n,W) is closed in X and satisfies the conditions (1) and (2).

Let W be a sequential neighborhood of x in X and a sequence $\{x_n\}$ converges to x. If (3) is not hold, then for each $i \in \mathbb{N}$, there is $x_{n_i} \in X \setminus H(i, W)$, thus there is $y_i \in X \setminus W$ such that $x_{n_i} \in g(i, y_i)$. Let U be an open neighborhood of x. There are $k, m \in \mathbb{N}$ such that $\{x_{n_i} : i \geq k\} \subset F(m, U)$, thus $y_i \in U$ for each $i \geq \max\{k, m\}$, hence the sequence $\{y_i\}$ converges to x, a contradiction because W is a sequential neighborhood of x.

Let $\{G_{\alpha}: \alpha \in \Lambda\}$ be a disjoint family of subsets of X and $n \in \mathbb{N}$. For each $x \in X$, take $V = X \setminus H(n, \cup \{G_{\alpha}: \alpha \in \Lambda \text{ and } x \notin G_{\alpha}\})$, then V is an open neighborhood of x in X and $V \cap H(n, G_{\alpha}) = \emptyset$ if $x \notin G_{\alpha}$. Hence $\{H(n, G_{\alpha}): \alpha \in \Lambda\}$ is a discrete family of subsets of X.

Lemma 1.3 Let X be a k-semistratifiable space. Then each s-discrete subset of X has an s-discrete extension of sequential neighborhoods in X.

Proof Let X be a k-semistratifiable space, and $W \to \{H(n, W)\}_{n \in \mathbb{N}}$ a correspondence of X satisfying all conditions in Lemma 1.2.

Let $\{x_{\alpha}:\alpha\in\Lambda\}$ be an s-discrete subset of X. We shall prove that there is an s-discrete family $\{W_{\alpha}:\alpha\in\Lambda\}$ such that each W_{α} is a sequential neighborhood of x_{α} in X. For each $\alpha\in\Lambda$, let $L_{\alpha}=\{x_{\beta}:\beta\in\Lambda\setminus\{\alpha\}\}$, $G_{\alpha}=\bigcup_{n\in\mathbb{N}}(H(n,X\setminus L_{\alpha})\setminus H(n,X\setminus\{x_{\alpha}\}))$. Then $\{G_{\alpha}:\alpha\in\Lambda\}$ is a disjoint family of subsets of X. We shall first prove that G_{α} is a sequential neighborhood of x_{α} for each $\alpha\in\Lambda$.

Let S be a sequence converging to some x_{α} in X. Since L_{α} is sequential closed and $x_{\alpha} \notin L_{\alpha}$, S is eventually in $H(m, X \setminus L_{\alpha})$ for some $m \in \mathbb{N}$ by Lemma 1.2, and $x_{\alpha} \notin H(m, X \setminus \{x_{\alpha}\})$, so we can assume that S is eventually in $H(m, X \setminus L_{\alpha}) \setminus H(m, X \setminus \{x_{\alpha}\}) \subset G_{\alpha}$, hence G_{α} is a sequential neighborhood of x_{α} .

For each $n \in \mathbb{N}, \alpha \in \Lambda$, $x_{\alpha} \notin H(n, X \setminus \{x_{\alpha}\})$. By the regularity, there is an open subset $V_{\alpha}(n)$ such that $x_{\alpha} \in V_{\alpha}(n) \subset \overline{V_{\alpha}(n)} \subset X \setminus H(n, X \setminus \{x_{\alpha}\})$. Put $F_{\alpha}(n) = H(n, G_{\alpha}) \cap \overline{V_{\alpha}(n)}$, $W_{\alpha} = \bigcup_{n \in \mathbb{N}} F_{\alpha}(n)$. Then W_{α} is a sequential neighborhood of x_{α} . In fact, if S is a sequence converging to x_{α} in X, S is eventually in $H(m, G_{\alpha})$ for some $m \in \mathbb{N}$ by Lemma 1.2, and S is eventually in $V_{\alpha}(m)$, thus S is eventually in $V_{\alpha}(m)$.

Let $\mathcal{W}=\{W_\alpha:\alpha\in\Lambda\}$. Then \mathcal{W} is a disjoint family because of each $W_\alpha\subset G_\alpha$. To complete the proof of the Lemma, it suffices to show that \mathcal{W} is an s-closure-preserving family, i. e., $\bigcup_{\alpha\in\Lambda'}W_\alpha$ is sequential closed in X for each $\Lambda'\subset\Lambda$. Let S be a sequence converging to $x\not\in\bigcup_{\alpha\in\Lambda'}W_\alpha$. Then $x\not\in\{x_\alpha:\alpha\in\Lambda'\}$, S is eventually in $H(m,X\setminus\{x_\alpha:\alpha\in\Lambda'\})$ for some $m\in\mathbb{N}$, and $H(m,X\setminus\{x_\alpha:\alpha\in\Lambda'\})\cap F_\alpha(n)\subset H(m,X\setminus\{x_\alpha\})\cap \overline{V_\alpha(n)}=\emptyset$ for each $\alpha\in\Lambda'$ and $n\geq m$. By Lemma 1.2, $\{H(n,G_\alpha):\alpha\in\Lambda\}$ is a discrete family in X for each $n\in\mathbb{N}$, so $\{F_\alpha(n):\alpha\in\Lambda\}$ is a discrete family of closed subsets of X. Put $E(m,\Lambda')=\bigcup_{\alpha\in\Lambda',n< m}F_\alpha(n)$. Then $E(m,\Lambda')$ is closed and $x\not\in E(m,\Lambda')$, thus S is eventually in $X\setminus E(m,\Lambda')$. Hence S is eventually in $X\setminus\bigcup_{\alpha\in\Lambda'}W_\alpha$, and $\bigcup_{\alpha\in\Lambda'}W_\alpha$ is sequential closed in X.

Remark 1.4 A locally compact *Moore space* can not be of the expandable property in Lemma 1.3. For example, the well-known Gillman-Jerison space $\psi(\mathbb{N}) = \mathbb{N} \cup \mathcal{A}$ (see [4]), where \mathcal{A} is an almost disjoint and maximal family of \mathbb{N} . The \mathcal{A} is a discrete closed subspace, it has not any s-discrete extension of sequential neighborhoods in $\psi(\mathbb{N})$.

Lemma 1.5^[4] Let $f: X \to Y$ be a closed mapping. Let K be a countably compact subset of Y, and let $S = \{x_n : n \in \mathbb{N}\}$ be a sequence in $f^{-1}(K)$ such that $f(x_m) \neq f(x_n)$ if $m \neq n$. If each point of X is a G_{δ} -set, then there exists a convergent subsequence of S.

Let $f: X \to Y$ be a mapping. f is a sequence-covering mapping^[8] if L is a convergent sequence in Y, there is a convergent sequence M in X such that f(M) = L. A perfect mapping of a metric space may not be sequence-covering. For example, let $X = (\{0\} \cup \{\frac{1}{2n} : n \in \mathbb{N}\}) \oplus (\{0\} \cup \{\frac{1}{2n} - 1 : n \in \mathbb{N}\})$, $Y = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$. X, Y are endowed with the subspace topology of real line \mathbb{R} , and let $f: X \to Y$ be the obvious mapping. Then f is a non-sequence-covering, perfect mapping.

2 sn-metrizable Spaces

Call a subspace of a space X a $fan(\text{at a point } x \in X)$ if it consists of a point x, and a countably infinite family of disjoint sequences converging to x. Call a subset of a fan a diagonal if it is a sequence meeting infinitely many of the sequence converging to x and converges to some point in the fan. A space X is an α_4 -space if every fan at x of X has a diagonal converging to x (see [4]).

Theorem 2.1 Let $f: X \to Y$ be a closed sequence-covering mapping, and X a k-

semistratifiable space. If X is an α_4 -space, so does Y.

Proof If Y is not an α_4 -space, there is a fan $\{y\} \cup \{y_i(n) : i, n \in \mathbb{N}\}$ at some y in Y without a diagonal converging to y, where each $y_i(n) \to y$ as $i \to \infty$. For each $k \in \mathbb{N}$, let $L_k = \{y_i(n) : i \in \mathbb{N}, n \leq k\}$. Then L_k is a sequence converging to y. Let M_k be a sequence of X converging to $u_k \in f^{-1}(y)$ with $f(M_k) = L_k$, we rewrite $M_k = \{x_i(n,k) : i \in \mathbb{N}, n \leq k\}$ with each $f(x_i(n,k)) = y_i(n)$.

Case 1 $\{u_k : k \in \mathbb{N}\}$ is finite.

There are a $k_0 \in \mathbb{N}$ and an infinite subset \mathbb{N}' of \mathbb{N} such that $M_k \to u_{k_0}$ for each $k \in \mathbb{N}'$, then $\{u_{k_0}\} \cup \{x_i(k,k) : i \in \mathbb{N}, k \in \mathbb{N}'\}$ is a fan at u_{k_0} in X. Thus it has a diagonal converging to u_{k_0} because X is an α_4 -space, so the fan $\{y\} \cup \{y_i(n) : i, n \in \mathbb{N}\}$ has a diagonal converging to y, a contradiction.

Case 2 $\{u_k : k \in \mathbb{N}\}$ has a non-trivial convergent sequence in X.

Without loss of generality, we assume that $u_k \to u \in f^{-1}(y)$ as $k \to \infty$. Let $\{U_m\}$ be a sequence of open subsets of X with $\overline{U_{m+1}} \subset U_m$, and $\{u\} = \bigcap_{m \in \mathbb{N}} U_m$. Fix $n, m \in \mathbb{N}$, there is a $k_m \geq n$ such that $u_{k_m} \in U_m$ because the sequence $\{u_k\}$ converges to u, there is an $i_m \in \mathbb{N}$ such that $x_{i_m}(n, k_m) \in U_m$ because the sequence $\{x_i(n, k_m)\}_i$ converges to u_{k_m} . We can assume that each $i_m < i_{m+1}$. Then $f(x_{i_m}(n, k_m)) = y_{i_m}(n)$. Since f is closed, any subsequence of the sequence $\{x_{i_m}(n, k_m)\}_m$ has a convergent subsequence in X by Lemma 1.5, and u is the unique accumulation of the sequence $\{x_{i_m}(n, k_m)\}_m$, thus $x_{i_m}(n, k_m) \to u$ as $m \to \infty$. Hence $\{u\} \cup \{x_{i_m}(n, k_m) : n, m \in \mathbb{N}\}$ is a fan at u in X, so it has a diagonal converging to u, a contradiction.

Case 3 $\{u_k : k \in \mathbb{N}\}$ has not any non-trivial convergent sequence in X.

Then $\{u_k : k \in \mathbb{N}\}$ is s-discrete in X. By Lemma 1.3, there is an s-discrete family $\{W_k : k \in \mathbb{N}\}$ such that each W_k is a sequential neighborhood of u_k . Since $\{x_i(1,k)\}_i$ converges u_k , there is an $i_k \in \mathbb{N}$ such that $x_{i_k}(1,k) \in W_k$. We can assume that each $i_k < i_{k+1}$, then $\{f(x_{i_k}(1,k))\}$ is a subsequence of $\{y_i(1)\}$, thus $\{x_{i_k}(1,k)\}$ has a convergent subsequence by Lemma 1.5. a contradiction.

Definition 2.2 Let $\mathcal{P} = \bigcup_{x \in X} \mathcal{P}_x$ be a cover of a space X such that for each $x \in X$,

- (1) \mathcal{P}_x is a network of x in X:
- (2) If $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

 \mathcal{P} is called a weak base^[1] for X if whenever $G \subset X$ satisfying for each $x \in G$ there is $P \in \mathcal{P}_x$ with $P \subset G$, then G is open in X; \mathcal{P} is called an $sn\text{-}network^{[4]}$ for X if each element of \mathcal{P}_x is a sequential neighborhood of x in X for each $x \in X$. A space X is called a g-metrizable $space^{[9]}$ (resp. an sn-metrizable $space^{[3]}$) if it has a σ -locally finite weak base(resp. sn-network).

Let \mathcal{P} be a family of subsets of a space X. \mathcal{P} is called a cs-network^[9] for X if whenever a sequence $\{x_n\}$ converges to $x \in U$ with U open in X there exists a $P \in \mathcal{P}$ such that $\{x_n\}$ is eventually in P and $P \subset U$. A space X is called an \aleph -space if it has a σ -locally finite cs-network.

Remark 2.3 For a space X, bases \Rightarrow weak bases \Rightarrow sn-networks \Rightarrow cs-networks^[4]. It is known that

(1) Metric spaces \Leftrightarrow g-metrizable spaces + Fréchet spaces^[9]:

- (2) g-metrizable spaces \Leftrightarrow sn-metrizable spaces + sequential spaces^[3];
- (3) sn-metrizable spaces $\Leftrightarrow \aleph$ -spaces $+ \alpha_4$ -spaces^[4];
- (4) \aleph -spaces \Leftrightarrow spaces with a σ -hereditarily closure-preserving cs-network^[11];
- (5) \aleph -spaces $\Rightarrow k$ -semistratifiable spaces^[7].

Theorem 2.4 sn-metrizability is preserved by closed sequence-covering mappings.

Proof Let $f: X \to Y$ be a closed sequence-covering mapping, here X is an sn-metrizable space. Let $\mathcal B$ be a σ -locally finite sn-network for X. Put $\mathcal P = \{f(B): B \in \mathcal B\}$. Then $\mathcal P$ is a σ -hereditarily closure-preserving cs-network for Y because f is a closed sequence-covering mapping. Thus Y is an \aleph -space. By Theorem 2.1, Y is an α_4 -space. Thus Y is an sn-metrizable space.

Rremark 2.5 Metric spaces or \aleph -spaces are not preserved by closed mappings^[4], and g-metrizable spaces or sn-metrizable spaces are not preserved by perfect mappings^[3]. \aleph -spaces are preserved by closed sequence-covering mappings by the proof of Theorem 2.4.

Corollary $2.6^{[4,5]}$ Metrizability or g-metrizability is preserved by closed sequence-covering mappings

Proof Let $f: X \to Y$ be a closed sequence-covering mapping. Suppose that X is a metrizable space(resp. g-metrizable space). Then Y is an sn-metrizable space by Theorem 2.4. And Y is a Fréchet space(resp. sequential space) because f is closed, thus Y is a metrizable space(resp. g-metrizable space).

In the final, some related counterexamples of mapping properties on sn-metrizable spaces are given.

Remark 2.7 There is a closed sequence-covering mapping of a metric space which is not open. Let $X = (\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}) \oplus (\{0\} \cup \{\frac{1}{2n} : n \in \mathbb{N}\})$, $Y = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$. X, Y are endowed with the subspace topology of \mathbb{R} . Let $f: X \to \mathbb{N}$ be the obvious mapping. Then f is a non-open, closed sequence-covering mapping.

Remark 2.8 It has been shown that every closed sequence-covering mapping of metric spaces is almost open^[10]. A mapping $f: X \to Y$ is said to be almost open if for each $y \in Y$ there is a $x \in X$ such that the image of each neighborhood of x in X under f is a neighborhood of y in Y. There is a perfect sequence-covering mapping of an sn-metrizable space which is not almost open. Let X_1 and X_2 be respectively subspaces $\mathbb{N} \cup \{p_1\}$ and $\mathbb{N} \cup \{p_2\}$ of the Stone-Čech compactification $\beta\mathbb{N}$, here $p_1, p_2 \in \beta\mathbb{N} \setminus \mathbb{N}$. Let $X = X_1 \oplus X_2$. Then each $\{x\}$ is sequentially open in X because X has not any non-trivial convergent sequence, thus $\{\{x\}: x \in X\}$ is a countable sn-network for X, so X is an sn-metrizable space. Put $A = \{p_1, p_2\}$. Let Y be the quotient space X/A, and $q: X \to Y$ the quotient mapping. Then q is a perfect mapping. q is sequence-covering because each convergent sequence in Y is trivial. Since $q(X_1)$ and $q(X_2)$ are not a neighborhood of q(A) in Y, it is easy check that q is not almost-open.

Remark 2.9 It is well-known that suppose X is a metric space and $f: X \to Y$ is a closed mapping, then Y is a metric space if and only if each $\partial f^{-1}(y)$ is compact(Hanai-Morita-Stone Theorem^[4]). Metrizability can not be replaced by sn-metrizability in the result. In fact, let S_2 and S_{ω} denote respectively the Arens' space and sequential $fan^{[4]}$. Then S_{ω} is a perfect image

of sn-metrizable space S_2 , and S_{ω} is not an sn-metrizable space. On the other hand, let X be a subspace of the Stone-Čech compactification $\beta\mathbb{N}$ with $\mathbb{N}\subset X$ and $|X\setminus\mathbb{N}|=\aleph_0$. Then a family $\{\{x\}:x\in X\}$ is a countable sn-network for X, thus X is an sn-metrizable space. Define a natural quotient mapping $q:X\to \frac{X}{C}$ with $C=X\setminus\mathbb{N}$. Then q is closed and the quotient space X/C is a metrizable space because it is homeomorphic to the subspace $\{0\}\cup\{\frac{1}{n}:n\in\mathbb{N}\}$ of \mathbb{R} . But $\partial q^{-1}([C])=C$ is not compact in X.

Remark 2.10 Liu Chuan^[5] has shown that a space is metrizable if and only if its every perfect image is g-metrizable, which gives an affirmative answer to a question posed by A. Arhangel' skii in Ohio University topology seminar. But the result is not held if g-metrizability is replaced by sn-metrizability. In fact, let X be the subspaces $\mathbb{N} \cup \{p\}$ of the Stone-Čech compactification $\beta\mathbb{N}$, here $p \in \beta\mathbb{N} \setminus \mathbb{N}$. Then X is an sn-metrizable space and every perfect image of X is sn-metrizable because every compact subset of X is finite and sn-metrizability is preserved by closed finite-to-one mappings^[3].

References

- [1] Arhangel'skii, A., Mappings and spaces, Russian Math. Surveys, 1966, 21: 115-162.
- [2] Franklin, S.P., Spaces in which sequences suffice, Fund. Math., 1965, 57: 107-115.
- [3] Ge Ying, On sn-metrizable spaces, Acta Math. Sinica, 2002, 45: 355-360(in Chinese).
- [4] Lin Shou, Point-Countable Covers and Sequence-Covering Mappings, Beijing: Science Press, 2002(in Chinese).
- [5] Liu Chuan, The fiber of closed mappings and closed sequence-covering mappings, Conference on Topology and its Applications in honor of A. V. Arhangel'skii, June 29-July 3, 2003, Brooklyn College of the City University of New Youk, USA.
- [6] Liu Chuan, Notes on g-metrizable spaces, Topology Proc., 2005, 29(1): 207-215.
- [7] Lutzer, D.J., Semimetrizable and stratifiable spaces, General Topology Appl., 1971, 1: 43–48.
- [8] Siwiec, F., Sequence-covering and countably bi-quotient mappings, General Topology Appl., 1971, 1: 143– 154.
- [9] Siwiec, F., On defining a space by a weak base, Pacific J. Math., 1974, 52: 233-245,
- [10] Yan Pengfei, Lin Shou and Jiang Shouli, Metrizability is preserved by sequence-covering and closed maps, *Acta Math. Sinica*, 2004, 47: 87-90(in Chinese).
- [11] Yun Ziqiu, A new characterization of N-spaces, Topology Proc., 1991, 16: 253-256.

sn 可度量化空间的映射定理

北本

(1. 漳州师范学院数学系,漳州,福建, 363000; 2. 宁德高等师范专科学校数学系,宁德,福建, 352100)

摘要: 具有 σ 局部有限 sn 网的正则空间称为 sn 可度量化空间. 本文讨论了 k 半层空间的可扩性质,证明了序列覆盖的闭映射保持 sn 可度量化空间,同时给出与 sn 可度量化空间的映射性质相关的几个例子.

关键词: k 半层空间; sn 可度量空间; α_4 空间; 序列覆盖映射; 闭映射