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To find the internal characterizations of certain iniages of metric spaces is one of the central
‘questions in general topology. Since Arhangel’skﬁ [1] published the famous paper ”Map-
 pings -and Spaces”, the behavior of certain images on metric spaces has attracted consid-
erable attention, and some noticeable results have been obtained. Weak bases introduced

by Arhangel’skii [1] have played an important role in the study of symmetric spaces and
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quotient images of metric spaces. But the spaces determined by certain weak bases is hard
to discuss mapping properties because in{rariance of weak bases is bad at some maps. For

example a g-metrizable space (i.e., a regular space with a o-locally finite weak base) is not
9 preserved by perfect maps [14]

In recent years, sequence—covering maps introduced by Siwice [12] cause attention once
agalin because it 18 closely related to the question about compact-covering and s- -images of
metric spaces {7, 8, 10]. It is discovered that sequence-covering maps is good for preserva,tlon -
of weak bases 9]. On the other hand, sn-networks determined by convergent sequences are
more convenient than weak-bases. In this paper, some relationships among the images of
metric spaces under almost-open maps or sequence-covering maps and spaces determined
by certain ,sn-netWOrks are established. Throughout this paper, all spaces are 13, all rha,ps
continuous and onto, and N is the set of positive integer numbers. Let us recall some
definitions. Refer to 3] or [5] for terms which are not defined here. ' ‘

Let f: X — Y beamap. fis quotient if whenever f~!(U) is open in X, then U is open
in Y'; f is pseudo-open if for each y € Y and a neighborhood U of f~1(y)in X, f(U) is a
neighborhood of y in Y; f is sequence- covering (12] if whenever {y, } is a convergent sequence
in Y there is a convergent sequence {z,} in X with each z, € f~ (yn); f is sequentially
quotient [2] if whenever {yn) is a convergent sequence in Y there is a convergent sequence
{zr} in X with each zx € f'(yn,); f is I- sequence- covering (9] if for each y € Y there is
'z € f~l(y) such that whenever {yn} is a sequence converging to y in Y there is a sequence
 {zn} converging to z in X with each zx € f~'(yn); f is 1 -sequentially quotient if for each
y € Y there is z € f~!(y) such that whenever {y,} is a sequence converging to y in Y there
1S a seqﬁence {x} converging to x in X with each zx € f yn, ).

The sequence-covering maps above-mentioned are different from the sequence-covering

maps defined by Gruenhage, Michael and Tanaka [6].

It is obvious that
closed maps — pseudo-open maps — quotient maps;
and that '

1-sequentially quotient maps

% .
1-sequence-covering maps _sequentially quotient maps.
N\ /

sequence-covering maps

Let X be a space, and P C X. Pisa sequential nezghborhood of a point £ In X if

whenever {z,} is a sequence convergmg to the point z, then {z} U {zn:n 2 m} C P for
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some m € N, i.e., {z,} is eventually in P; P is a sequentially open subset of X if P is a
sequential neighborhood of x in X for each x € P. X is called a sequential space [4] if each
'sequentia,lly open subset is open in X. X is called a Fréchet space 4] if x € P C X, there
1s a sequence in P converging to z in X.

It is easy to check that every Fréchet space is a sequential space, and for a space X, (1)
UNYV is a sequential neighborhood of a point z in X WU 'V are sequential neighborhoods of
~xin X; (2) A subset P of X is a sequential neighborhood of z if every sequence converging
to z In X has a subsequence which is eventually P; (3) A subset P of a Fréchet space X is -
a neighborhood of z if P is a sequentla,l nelghborhood of z in X.

Lemmal — 2] Let f: X - Y bea map. Then

(1) If X is a sequential space, then f is a quotient map if and only if Y is a sequential
space and f is a sequentially quotient map. _

(2) If X is a Fréchet space, then f is a pseudo-open map if and only if Y is a Fréchet
~ space and f is a sequentially quotient map. 0

Let P = |J,.cx Pz be a cover of a space X such that for each r € X, o

(a) Py is a network of z in X; .

(b) If U,V € Py, then W CUNV for some W € P,.

P is called a weak base [1] for X if whenever G C X satisfying for each z € G there
is P € P, with P C G, then G is open in X;P is called an sn-network 9] for X if each
element of P; is a sequential neighborhood of z in X for each z € X. Let P = J,x Pz be
a weak base(resp. an sn-network) defined the above-mentioned. Each P, is called a local
- weak base(resp. a local sn-network) at z. A space X is called a g-first countable spa,ce(resp '
“an sn-first countable space) if X has a weak base(resp. an sn-network) such that the local
weak base(resp. the local sn-network) of each point in X is a countable fa,.umly.

~ First, we give some technical lemmas.

Lemma 2—Let P be a cover of a space X. Then

(1) If P is a weak base of X,P is an sn-network of X;

(2) If P is an sn-network of a sequential space X, P is a weak base of X. )

By the Lemma 2, we have the following relations.
First countable spaces «— g-first countable+Fréchet «— sn-first countable+Fréchet
|
g-first countable «— sn-ﬁrét 'countable+se‘quential.

Lemma 3—Let f : X — Y be a map. Suppose {Bj}nen is a decreasing network of
~a point z in X and each f(B,) is a sequential neighborhood of ‘f (z) in Y. If a sequence
{yn} converges to f(z) in Y, there is a sequence {zn} converging to x in X with each
Tn € f frl(yn)ﬂ l
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-PROOF: For each n € N, f(B,) is a sequential neighborhood of f(z) in Y, there exists
 in € N such that y; € f(By) for each ¢ > ip, then f~Yy;) N By, # 0. We can assume that
1 <ip <ipg1. For each j € N, Put '

e f~y5), R
y fnl(yj)ana if inSj_< in+1,n € N.

Then z; € f "l(yj) and the sequence {x;} converges to z in X. - O
Theorem 4 — Let f : X — Y be a 1l-sequentially quotlent map with X sn-first

countable Then Y is sn-first countable and f is 1-sequence-covering,
PROOF : Let P, be a countable local sn-network at each point z € X Without
losmg generality, denote P, by { Py n}nen with every Py i1 C Prg. There is z, € f~(y)
satisfying the condition of 1-sequent1ally quotient maps for each y € Y. Then each f(P Ty, )
~ is a sequential neighborhood of y in Y. Let Q, = {f(P): Pc¢ Pz, }. Then Uer Q, is an
sn-network for Y, thus Y is sn-first countable. And f is 1-sequence-covering by Lemma
3. ' ' [
‘C‘orollary 5 — g-first countable spaces are preserved by 1-sequentially quotient and
quotient maps. - -
PROOF : Let f : X — Y be a l-sequentially quotient and quotient map. Then Y 1is

an sn-first countable space and a sequential space by Theorem 4 and Lemma 1. thus Y is
g-first countable by Lemma 2. ' - | [

- The corollary is closely related to the following Question posed by~Y. Tanaka 114]: Is
g-ﬁrst eouma,bility preserved by open maps? Let f : X — Y be a map. f is called almost-
open if for each y € Y thereisz € f~ L(y) such that whenever U is a neighborhood of z in
X then f(U) is a neighborhood of f(y) in Y. Every almost-open map is pseudo-open

Theorem 6 — Let f : X — Y be a map.

(1) If X is first countable and f is almost-open, then f is 1-sequence-covering.

(2) If Y is Fréchet and f is 1-sequentially quotient, then f is almost-open.

PRrROOF : (1) For each y € Y, there is T, € f ~1(y) satisfying the condition of almost- |
open maps. Since X is a first-countable space, let {Byn }nen be a decreasing local base of
Ty in X. Then {f(Byn)}nen is a decreasing neighborhood base of ¥ in ¥'. By Lemma 3, f
1S l-sequence-covermg | ' '

(2)Foreachy € Y, thereisz € f~ 1(y) satisfying the condition of 1-sequentially quotient
" maps. If U is a nelghborhood of z in X, then f (U) is a sequential neighborhood of y in
Y because f is 1-sequentially quotlent Thus f(U) is a neighborhood of y in Y by Y is a
- Frechet space, so f is almost-open.

“Corollary 7 — Let f: X —Y bea map with X first-countable. Then f is almost-open
1f and only if f is 1-sequentially quotlent and pseudo-open. '

PROOF : It is easy to check by Theorem 6 and Lemma 1. . | O
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We shall give some characterizations of metric spaces under sequence-covering maps.
In 1960, V. Ponomarev proved that évéry first-countable space is an open image ot some
supspace of a Baire zero-dimensional metric spaces. Now, we generalize the Ponomarev’s
method as follows. Let P be a network of a space X. Denote P by {P,}aci.- A is endowed -
with the discrete topology, and put M = {a = (a;) € A* : {Pq, }ien forms a network at
some point z, in X}. Then M is a metric space. Define f : M — X by f(a) = zo. Then
(f,M, X,P) is called a Ponomarev’s system. '

Lemma 8 — Let (f, M, X,P) be a Ponomarev’s system.

(1) f is a map if there exists a countable subset of P which forms a network at z for
every r € X. '

(2) For every non-empty subset C of X, f~!(C) is a separable subspace of M if C only
meets with countable many elements of P.

(3) fis a 1-sequence—cover1ng map if P is a countable local sn-network of X.

PrRoOOF : (1) and (2) can be easily obtained by using the Ponomarev’s method(see
Theorem 6.1 in [6]). We only need show that (3) is hold. Let P be a countable local
sn-network for X. For each z € X, there is an sn-network {Pa; }ien of z in X which is a
countable subset of P. Put 8 = (a;) € A“. Then B € f~!(x). For eachn € N, let B
{(7) € M : v = o for each ¢ < n}. Then {Bp}nen is a decreasing local base of § in M,
and f(Bn) = Ni<nPs,;. In fact, suppose v = (vy;) € UieNa then f(7v) € ﬂiEN Py, C nign Poy;
‘Thus f(Bp) C [)i<n Pa;- On the other hand, let 2 € N;<p Py, take a network {Ps, }ien of
2 i’ X such that :5,,; = a; when i < n. Let § = (§;) € A, Then z = f(4) € f(Bn), thus
Nicn Pai C f(Bn). Hence f(Bn) = ();<, Pa; is a sequential neighborhood of z in X . By
Lemma 3, f is 1-sequence-covering. : . ’ L

A map f: X — Y is said to be an s-map if each f~1(y) is separable.

Theorem 9 — The following are equivalent for a space X:

(1) X has a point-countable'.‘sn-'network' | '

(2) X 1s a 1-sequence-covering and s-1ma,ge of a metric space;

(3) X is a 1-sequentially quotient and S- -image of a metric space.

PROOF : (1) &> (2) has been shown by the first author in this paper in 9] written in
Chinese, here an outline of proof is given for reader convenience. (1) implies (2) by Lemma
8 and (2) implies (3) obviously. Let f : M — X be a l-sequentially quotient and s-map
here M is metric. Let ‘B bé a o-locally finite base of M by the Nagaté,-Smirnov’s metrization
theorem For each z € X, there is a; € f"l(:r:) satistying the condition of 1-sequentially
quotlent maps. There is a countable subset B, of B Wthh is a local base of a, in M. Then
h f(B;) is a countable local sn-network of z in X. Hence Uzex f(Bz) is a point-countable
sn-network for X. _ U

Corollary 10 — The "follow'ing are equivalent for a space X

(1) X has a point-countable weak base;

(2) X is a 1-sequence-covering, quotient and s-image of a metric space,
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- (3) X is a 1-sequentially quotient, quotient and s-image of a metric space, (]

Next, we shall discuss the r-images of metric spaces. For a metric space (X,d), f: X —
Y is called a m-map if d(f~(y), X = f~1(V)) > 0 for each y € Y and A neighborhood V' of
yinY. Obwously, every compa,ct map on metric spaces is a m-map. Let P be a cover of a
' space X. P is ca,lled an sn-cover for X if each element of Pisa sequential neighborhood
of some point in X, and for each z € X some P e P is a sequential neighborhood of x.
Let {P,} be a sequence of covers of a space X. {Pn} is called a point-star network [10]
for X if {st(z,Pp)}nex is a network of z in X for each z € X. "Point-star networks”
were called ”o-strong networks” in (7], which is a generalization of the development of a
space. A sequence {P,} of covers of X is called a point-star network of sn-covers if {Pn}
is a point-star network and each P is an sn-cover for X. It is easy to check that {P,} is
a point-star network if and only if {P,}nex is @ network of z in X for each z € X with
r e P,eP,. '

Theorem 11 — The following are equivalent for a space X:

(1) X is a 1-sequence-covering and m-image of a metric space;

(2) X is a 1-sequentially quotient and w-image of a metric space;

(3) X has a point-star network of sn-covers. -

PROOF :- (1) = (2) is obvious. (2) = (3). Let (M,d) be a metric space and f : M — X
be a 1-sequentially quotient and w-map. For each n € N, put P,, = {f(B(z,1/n)) : 2z € M},
here B(z,1/n) = {y € M : d(y,z) < 1/n}. Then {P,} is a point-star network for X. In
fact, for each z € U with U open in X, there is n € N such that d(f~1(z), M f~1Y(U)) > 1/n.
Take m € N with m > 2n. If z € f(B(z,1/m)), thenf'lzi) N B(z,1/m) # ¢. Suppose
that B(z,1/m) ¢ f~Y(U). Then d(f~!(z),M — f~1(U)) < 2/m < 1/n, a contradiction.
Hence B(z,1/m) C f~Y(U), thus f(B(z,1/m)) C U, so st(z,Pm) C U. Therefore, {P,} is
a point-star network for X. Since f is l-sequentially quotient map, it is easy to check that
each P 1s an sn-cover of X.

(3) = (1). Let {P;} be a point-star network of sn-covers for a space X. We extend
the Ponomarev’s system to the cover sequences of spaces as follows. For each 7 € N. put
P; = {Pq; }ach,, and endow A; with the discrete topology. Let M = {a = (o) € [[;ex A
{Po,}ien forms a network at some point z, in X }. Then M is a metric space. Define

f:M—> Xbyf (a) = Ty for each a € M. It is easy to check that f is a map. We shall

. show that f 1s a m-map. Let py : H,,EN A; — Ay be the projective map for each k € N. For
ea,clh a,3 € M, define

d(a, §) = 0, - if o =03,
{ max{1l/k:pr(a)# pk(8)}, if a#p,

Then d is a metric of M. For each z € U with U open in X . there is n € N such that
st(z,Pn) C U. For each a € f~'(z), and 8 € M, if d(a, 3) < 1/n, then pi(a) = pn(B)
for each i < n, thus xr € P, o, = Py, () SO f(B) € Nien Py, (3) C U, hence d(ffl(:r:),M —
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f~HU)) > 1/n. Therefore f is a m-map.

117

Now, we shall show that f is l-sequence-covering. Let zg € X. For each ¢ € N, take

a; € A; such that P, is a sequential neighborhood of zg in X. Then {Pa; bien is a network
of zg in X. Put 8 = (a,) € [Liexn Ai- Then B € f~ I(zg). Let {z,} be a sequence converging
to zo in X. For each i, n € N, take a;, € A; such that Tn € P,. with a;n = a; it z, € Py,

Since the sequence {zn,} is eventually in P,,, there exists n; € N such that a;, = a; for each

n > n;, thus the sequence {o;n } converges to a; in A;. For each n € N, put 8, = (ain). Then '

f(Bn) = an and the sequence {8,} converges to 3 in M. Hence f is a 1-sequence-covering
map. , ' ' | ]

~All spaces in the final are assume to be regular, and we shall further discuss some
topological properties which is preserved by 1-sequentially quotient maps.

Let P be a collection of subsets of a space X. P is called a k-network [5] if for every
compact subset K and a neighborhood V of K in X there exists a finite subset F of
P such that K C UF C V. A space with a o-locally finite k-network is called an N-
space. A space with a o-locally finite weak base is called a g-metrizable space [13]. S,
‘1s the quotlent space obtalned from the tOpologlcal sum of wy many non-trivial convergent
- sequences by 1dent1fymg all the limit pomts to a smgle point. It is known that metric
spaces «—— g-metrizable spaces+Fréchet spaces — N-spaces+first countable spaces «—
g-metrizable spaces — N-spaces+g-first countable spaces — R-spaces «—— spaces which has
a o-hereditarily closure-preserving k-network and has not any (closed) copy ot Sy, ;.

- Theorem 12 — R-spaces are preserved by 1-sequentially quotient and closed maps.

PROOF : Let f: X — Y be a l-sequentially quotient and closed map, here X 1is
an N-space. Since f is closed, Y has a o-hereditarily closure-preserving. k-network. If
Y is not an R-space, Y has a closed subspace T' which is homeomorphic to S,,. Let

= {t} U (Usacw, T), here the family {To}a<w, i disjoint and each T, is a sequence
converging to t. Since f is 1-sequentially quotient, there is s € f~ 1(t) such that whenever
{yn}is a sequence‘convefging totin Y there is a sequence {xx} converging to s in X with
each zx € f~1(yn, ). For each & < w; thereisa sequénce Xo converging to s such that f(X,)

is a subsequence of the sequence T,. Let § = {s} U (| Then S is homeomorphic

vr Xa).
“to S,,. In fact, it is obvious that the family {Xa}la<w, 1S dlS_]OiIlt. Since each point of T,
is isolated in T, each point of X, is isolated in S. For each a < w; and each finite subset
F, of Xg, then {f(Fu)}acw, i dlscrete in Y. By the continuity of f, {F,}a<w, is discrete
in X. Thus the subspace S of X is homeomorphic to S,,,, a contradiction. Therefore, Y is
an N-space. . - [

Corollary 13 — g-metrizability or metrizability is pr,eserved by l—seqku'entia,llyf quotient
_ and closed maps. ' '

"PROOF : Since every g-metrizable space is equlvalent to an R-space with countable
local weak bases, g-metrizability is preserved by 1-sequentially quotient and closed maps

by Corollary 5 and Theorem 12. Since every metric space is equivalent to a g-metrizable,
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Fréchet space, metrizability is preserved by 1-sequentially quotient and closed ‘maps by
Corollary 7 and Lemma, 1. - (]

S., 1s the quotient space obtained from the topological sum of w many non-trivial con-
vergent sequences by identifying all the limit points to a single point.

Erample 14 — (1) S, is a sequence-covering, pseudo-open and s-image of a metric space
110). Since S, is not g-first countable, it is not any 1-sequentially quotient image of a metric
space by Lemma 1 and Corollary 5. _

(2) There is a two-to-one quotient map f : M — Y, with M a locally compact metric
space, and Y completely regular, not point-countable sn-network [6]. Y is not any 1-
sequentially quotient and s-image of a metric space by Theorem 9, thus f is not a 1-
sequentially quotient map.

(3) There is a 1-sequence-covering and perfect map f : X — Y such that f is not
almost-open. Let X; be the set w1.+ 1 of order numbers. X is endowed with the following
topology: Declaring each point x € X; — {w;} isolated and the point w; having a local base
In w1 + 1 with the usual order topology. Take X7 = X}, and let X = X ® X5. Then X is
regular. The limit point in X; or X5 is denoted by a; or ag, respectively. Put A = {a1,a2}.
Let Y be the quotient space X/A, and q: X — Y the quotient map. Then ¢ is a pertect
map (i.e., a closed and compact map), g is 1-sequence-covering because each convergent
sequence in Y is trivial. Since g(X;) and g(Xs2) are not a neighborhood of g(A) in Y, it is
easy check that g 1S not almost—open. '

(4) There is a perfect map f : X — Y such that f is not sequentially quotient.

Let X be the Stone-Cech compactification AN,Y = {0} U {1/n : n € N} with the

subspace topology of real line R. Define f : X —- Y by f(BN \N) = {0} and f(n) = 1/n
~ for each n € N. Then f is a non-sequentially quotient, perfect map.

(5) There is an open map f : X — Y such that f is not sequentially quotient.

Let Y = {0}U{1/n : n € N} with the subspace topology of real line R, and X = {0}UNZ.
For each n,i € N, put V(n,i) = {(n,k) € N :k>i} Xis endowed with the following
topology: Each point in N is isolated; an element of a neighborhood base of 0 in X is
{0} U ((Uns, V(n,4,)), here m,i, € N. Define f : X = Y by f(0) =0 and f(n,i) = 1/n
for each n,; € N?. Then f is a non-sequentially quotient, open map. O
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