A note on D-spaces

SHOU LIN

Abstract. Every semi-stratifiable space or strong Σ -space has a σ -cushioned (modk)-network. In this paper it is showed that every space with a σ -cushioned (modk)-network is a D-space, which is a common generalization of some results about D-spaces.

Keywords: D-spaces, (modk)-networks, cushioned collections, semi-stratifiable spaces

Classification: 54E18, 54D20

A neighborhood assignment for a topological space (X,τ) is a function $\phi: X \to \tau$ such that $x \in \phi(x)$ for each $x \in X$. A space X is said to be a D-space if, for each neighborhood assignment ϕ for X, there exists a closed discrete subset D of X such that $\{\phi(d): d \in D\}$ covers X. The first published results on D-spaces appear in [5], where it is proved that finite products of Sorgenfrey lines are D-spaces. Several interesting questions on D-spaces were raised by E.K. van Douwen and W.F. Pfeffer in [6]. It is still an open problem whether every regular Lindelöf space is a D-space. It is also asked whether there exists a subparacompact or metacompact space which is not a D-space. These questions are still open.

In [1] the authors study D-property in classes of generalized metric spaces. It is known that semi-stratifiable spaces are D-spaces [2], and strong Σ -spaces are D-spaces [3]. Semi-stratifiable spaces need not be strong Σ -spaces, and strong Σ -spaces need not be semi-stratifiable spaces [8]. It is therefore natural to look for a "common denominator" to the results mentioned above.

Throughout this paper, all spaces are assumed to be T_1 . We refer the reader to [7] for notations and terminology not explicitly given here.

Definition 1. A space X is said to be a *semi-stratifiable space* [4] if, for each open set U of X, one can assign a sequence $\{F(n,U)\}_{n\in\mathbb{N}}$ of closed subsets of X such that

- (1) $U = \bigcup_{n \in \mathbb{N}} F(n, U);$
- (2) $F(n,U) \subset F(n,V)$ whenever $U \subset V$.

A correspondence $U \to \{F(n,U)\}_{n \in \mathbb{N}}$ is a *semi-stratification* for X whenever it satisfies the conditions (1) and (2).

This project was supported by NNSF of China (No.10571151).

314 S. Lin

A collection \mathcal{P} of pairs of subsets of a space X is called a *pair-network* for X if whenever $x \in U$ with U open in $X, x \in P_1 \subset P_2 \subset U$ for some $(P_1, P_2) \in \mathcal{P}$. A collection \mathcal{P} of pairs of subsets of a space X is called *cushioned* if $\bigcup \{P_1 : (P_1, P_2) \in \mathcal{P}'\}$ $\subset \bigcup \{P_2 : (P_1, P_2) \in \mathcal{P}'\}$ for each $\mathcal{P}' \subset \mathcal{P}$.

Lemma 2. A space is a semi-stratifiable space if and only if it is a space with a σ -cushioned network.

PROOF: Let (X,τ) be a semi-stratifiable space, and $U \to \{F(n,U)\}_{n\in\mathbb{N}}$ be a semi-stratification for X. For each $n\in\mathbb{N}$, put $\mathcal{P}_n=\{(F(n,U),U):U\in\tau\}$. If $\tau'\subset\tau$, then $\bigcup_{U\in\tau'}F(n,U)\subset F(n,\bigcup\tau')\subset\bigcup\tau'$. Thus \mathcal{P}_n is a cushioned collection of X. Hence, $\bigcup_{n\in\mathbb{N}}\mathcal{P}_n$ is a σ -cushioned network for X.

Conversely, suppose that a space X has a σ -cushioned network $\bigcup_{n\in\mathbb{N}} \mathcal{P}_n$, where each \mathcal{P}_n is cushioned in X. For each $n\in\mathbb{N},\ U\in\tau$, put $F(n,U)=\overline{\bigcup\{P_1:(P_1,P_2)\in\bigcup_{i\leq n}\mathcal{P}_i,P_2\subset U\}}$. It is obvious that $F(n,U)\subset U$ and $F(n,U)\subset F(n,V)$ whenever $U\subset V$. Let $x\in U\in\tau$. There exist $n\in\mathbb{N}$ and $(P_1,P_2)\in\mathcal{P}_n$ such that $x\in P_1\subset P_2\subset U$, thus $x\in F(n,U)$. Hence $U=\bigcup_{n\in\mathbb{N}}F(n,U)$. Therefore, $U\to\{F(n,U)\}_{n\in\mathbb{N}}$ is a semi-stratification for X.

Definition 3. A collection \mathcal{P} of pairs of subsets of a space X is called a (modk)-network for X if, there is a cover \mathcal{K} of compact subsets of X such that, whenever $K \in \mathcal{K}$ and $K \subset U$ with U open in X, then $K \subset P_1 \subset P_2 \subset U$ for some $(P_1, P_2) \in \mathcal{P}$.

Theorem 4. Spaces with a σ -cushioned (modk)-network are D-spaces.

PROOF: Suppose a space X has a σ -cushioned (modk)-network $\bigcup_{n\in\mathbb{N}} \mathcal{P}_n$ with respect to a cover K of compact subsets, where each \mathcal{P}_n is cushioned and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for each $n \in \mathbb{N}$. Assume each \mathcal{P}_n is well-ordered.

Let ϕ be an arbitrary neighborhood assignment for X. First, a subset D_n of X is defined inductively as follows for each $n \in \mathbb{N}$.

Set $D_0 = \emptyset$. Assume $D_m \subset X$ is defined for all 0 < m < n.

A finite subset D_{α}^n of X is defined inductively as follows for order numbers α . Set $D_0^n = \emptyset$. Assume D_{β}^n is defined for all $0 < \beta < \alpha$. Put

$$U = \bigcup \left\{ \phi(d) : d \in \left(\bigcup \{D_{\beta}^n : \beta < \alpha\} \right) \cup D_{n-1} \right\}.$$

Denote R_{α}^n by the following requirement: There exist $K \in \mathcal{K}$, $(P_1, P_2) \in \mathcal{P}_n$ and $\{x_1, x_2, \ldots, x_k\} \subset K \setminus U$ such that

$$K \subset P_1 \subset P_2 \subset U \cup \phi(x_1) \cup \phi(x_2) \cup \cdots \cup \phi(x_k).$$

If R_{α}^n does not hold, the induction on α stops. Otherwise, let (P_1, P_2) be the first pair in \mathcal{P}_n that satisfies R_{α}^n , and put $D_{\alpha}^n = \{x_1, x_2, \dots, x_k\}$.

Let $D_n = (\bigcup_{\alpha < \gamma_n} D_{\alpha}^n) \cup D_{n-1}$ for some order number γ_n , where γ_n is the first ordinal number for which R_{α}^n does not hold.

Secondly, put $D = \bigcup \{D_n : n \in \mathbb{N}\}$, and we shall prove that X is a D-space by D.

Claim 1. $X = \bigcup_{d \in D} \phi(d)$.

If not, then $K \setminus \bigcup_{d \in D} \phi(d) \neq \emptyset$ for some $K \in \mathcal{K}$. Put $L = K \setminus \bigcup_{d \in D} \phi(d)$. L is a non-empty, compact subset of X. There is a finite subset $\{x_1, x_2, \ldots, x_k\}$ of L such that $L \subset \phi(x_1) \cup \phi(x_2) \cup \cdots \cup \phi(x_k)$ because ϕ is a neighborhood assignment for X. Denote $M = K \setminus (\phi(x_1) \cup \phi(x_2) \cup \cdots \cup \phi(x_k))$. Then $M \subset K \setminus L \subset \bigcup_{d \in D} \phi(d)$. By the compactness of M, $M \subset \bigcup_{d \in D_j} \phi(d)$ for some $j \in \mathbb{N}$, thus $K \subset \phi(x_1) \cup \phi(x_2) \cup \cdots \cup \phi(x_k) \cup (\bigcup_{d \in D_j} \phi(d))$. Since \mathcal{P} is a (modk)-network for X with respect to \mathcal{K} , there are $m \in \mathbb{N}$ and $(P_1, P_2) \in \mathcal{P}_m$ such that

$$K \subset P_1 \subset P_2 \subset \phi(x_1) \cup \phi(x_2) \cup \cdots \cup \phi(x_k) \cup \left(\bigcup_{d \in D_i} \phi(d)\right).$$

Put $n = \max\{j+1,m\}$, $U = \bigcup\{\phi(d): d \in D_{n-1}\}$. Then $\bigcup_{d \in D_j} \phi(d) \subset U$, $(P_1, P_2) \in \mathcal{P}_n$ and $\{x_1, x_2, \dots, x_k\} \subset K \setminus U$. Hence R_1^n holds, thus $D_1^n = \{x_1, x_2, \dots, x_k\}$, and $K \subset P_1 \subset P_2 \subset \bigcup_{d \in D} \phi(d)$, a contradiction.

Claim 2. Each D_n is a closed discrete subset of X.

 D_0 is closed discrete in X. Suppose that D_{n-1} is closed discrete in X. It suffices to prove that $\bigcup_{\alpha<\gamma_n}D^n_{\alpha}$ is closed discrete in X in order to show that D_n is closed discrete in X. For each $\alpha<\gamma_n$, let $(P^n_{1\tilde{\alpha}},P^n_{2\tilde{\alpha}})$ be the first element in \mathcal{P}_n satisfying R^n_{α} . Assume that $x\in\overline{\bigcup_{\alpha<\gamma_n}D^n_{\alpha}}$. Since $\bigcup_{\alpha<\gamma_n}D^n_{\alpha}\subset\bigcup_{\alpha<\gamma_n}P^n_{1\tilde{\alpha}}$, then $x\in\bigcup_{\alpha<\gamma_n}P^n_{2\tilde{\alpha}}\subset\bigcup\{\phi(d):d\in(\bigcup\{D^n_{\alpha}:\alpha<\gamma_n\})\cup D_{n-1}\}$. And since each $D^n_{\alpha}\cap\bigcup_{d\in D_{n-1}}\phi(d)=\emptyset$, then $x\in\bigcup\{\phi(d):d\in\bigcup_{\alpha<\gamma_n}D^n_{\alpha}\}$. Let α_x be the minimal element α in γ_n satisfying $x\in\bigcup\{\phi(d):d\in D^n_{\alpha}\}$. Put $V=\bigcup\{\phi(d):d\in D^n_{\alpha_x}\}\setminus\overline{\bigcup_{\alpha<\alpha_x}P^n_{1\tilde{\alpha}}}$. Then V is an open neighborhood of x in X, and $V\cap(\bigcup_{\alpha<\gamma_n}D^n_{\alpha})\subset D^n_{\alpha_x}$ is finite. Hence, $\bigcup_{\alpha<\gamma_n}D^n_{\alpha}$ is closed discrete in X.

Claim 3. D is closed discrete in X.

For each $x \in X$, there is $n \in \mathbb{N}$ such that $x \in \bigcup_{d \in D_n} \phi(d)$ by Claim 1. Since D_n is closed discrete in X, there is an open neighborhood W of x in X such that $W \subset \bigcup_{d \in D_n} \phi(d)$ and W contains at most a point in D_n . Thus $W \cap D \subset ((\bigcup_{d \in D_n} \phi(d)) \cap (D \setminus D_n)) \cup (W \cap D_n)$. For each $y \in D \setminus D_n$, $y \in D_\alpha^m$ for some m > n and some $\alpha < \gamma_m$. Put $U = \bigcup \{\phi(d) : d \in (\bigcup \{D_\beta^m : \beta < \alpha\}) \cup D_{m-1}\}$. Then $\bigcup_{d \in D_n} \phi(d) \subset U$, and $D_\alpha^m \cap U = \emptyset$, thus $y \notin \bigcup_{d \in D_n} \phi(d)$. Hence, $(D \setminus D_n) \cap (\bigcup_{d \in D_n} \phi(d)) = \emptyset$. This shows that W contains at most a point in D. Therefore, D is closed discrete in X.

316 S. Lin

A collection \mathcal{F} of closed subsets of a space X is called closure-preserved if $\bigcup \mathcal{F}'$ is closed for each $\mathcal{F}' \subset \mathcal{F}$. A space is called a strong Σ -space (strong $\Sigma^{\#}$ -space) [8] if there exists a σ -locally finite (σ -closure-preserved) collection \mathcal{F} of closed subsets, and a cover \mathcal{K} of X by compact subsets, such that, whenever $K \in \mathcal{K}$ and $K \subset U$ with U open in X, then $K \subset F \subset U$ for some $F \in \mathcal{F}$. Every strong Σ -space is a strong $\Sigma^{\#}$ -space. If a collection \mathcal{F} of closed subsets of a space X is closure-preserved, then a collection $\{(F,F):F\in\mathcal{F}\}$ of pairs of subsets of X is cushioned. Hence every strong $\Sigma^{\#}$ -space or semi-stratifiable space is a space with a σ -cushioned (modk)-network. Thus Theorem 4 is a common generalization of Buzyakova's result [3] and Borges-Wehrly's result [2]. The following corollary is an unpublished result obtained by Liang-xue Peng.

Corollary 5. Every strong $\Sigma^{\#}$ -space is a D-space.

Acknowledgment. The author would like to thank Liang-xue Peng for useful information about D-spaces.

REFERENCES

- [1] Arhangel'skii A.V., Buzyakova R.Z., Addition theorems and D-spaces, Comment. Math. Univ. Carolin. 43 (2002), 653-663.
- [2] Borges C.R., Wehrly A.C., A study of D-spaces, Topology Proc. 16 (1991), 7-15.
- [3] Buzyakova R.Z., On D-property of strong Σ -spaces, Comment. Math. Univ. Carolin. 43 (2002), 493–495.
- [4] Creede G., Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47-54.
- [5] van Douwen E.K., Simultaneous extension of continuous functions, Thesis, Free University, Amsterdam, 1975.
- [6] van Douwen E.K., Pfeffer W.F., Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), 371-377.
- [7] Engelking R., General Topology (Revised and completed edition), Heldermann Verlag, Berlin, 1989.
- [8] Gruenhage G., Generalized metric spaces, in Handbook of Set-Theoretic Topology, K. Kunen, J.E. Vaughan (Eds.), Elsevier Science Publishers B.V., Amsterdam, 1984, pp. 423-501.

DEPARTMENT OF MATHEMATICS, ZHANGZHOU NORMAL UNIVERSITY, FUJIAN 363000, P.R. CHINA

Institute of Mathematics, Ningde Teachers' College, Fujian 352100, P.R. China E-mail: linshou@public.ndptt.fj.cn

(Received October 10, 2005, revised January 13, 2006)