k-SYSTEMS, k-NETWORKS AND k-COVERS

JINJIN LI, Zhangzhou, and SHOU LIN, Fuzhou

(Received June 5, 2003)

Abstract. The concepts of k-systems, k-networks and k-covers were defined by A. Arhangel'skiĭ in 1964, P. O'Meara in 1971 and R. McCoy, I. Ntantu in 1985, respectively. In this paper the relationships among k-systems, k-networks and k-covers are further discussed and are established by mk-systems. As applications, some new characterizations of quotients or closed images of locally compact metric spaces are given by means of mk-systems.

Keywords: k-systems, k-networks, k-covers, k-spaces, point-countable families, hereditarily closure-preserving families

MSC 2000: 54D50, 54E45, 54C10

1. INTRODUCTION

Let X be a topological space and \mathscr{P} a cover of X. X is determined by \mathscr{P} if $F \subset X$ is closed in X if and only if $F \cap P$ is closed in P for every $P \in \mathscr{P}$ [7]. \mathscr{P} is called a k-system (resp. mk-system) of X [1] (resp. [10]) if X is determined by \mathscr{P} and each element of \mathscr{P} is compact (resp. metric and compact) in X. \mathscr{P} is called a k-network for X if, whenever $K \subset U$ with K compact and U open in X, then $K \subset \bigcup \mathscr{P}' \subset U$ for some finite $\mathscr{P}' \subset \mathscr{P}$ [14]. \mathscr{P} is called a compact (resp. closed) k-network if \mathscr{P} is a k-network for X and each element of \mathscr{P} is compact (resp. closed) in X. k-systems and k-networks play an important role in quotient images of metric spaces and generalized metric spaces [18]. For example, Zhaowen Li and Jinjin Li [10] partly answered the Michael-Nagami's problem by mk-systems; Shou Lin [11] obtained new characterizations of generalized metric spaces by compact k-networks; Y. Tanaka [16] proved the following interesting result.

This work was supported by the NNSF of China (10271056, 10271026). This work has been done during the second author's stay at Zhangzhou Teachers' College.

Tanaka's Theorem. A Hausdorff space is a closed s-image of a locally compact metric space if and only if it is a Fréchet space which is determined by a pointcountable cover of metric compact subspaces.

A generalization of the concept of k-networks is the following one of k-covers introduced by McCoy and Ntantu in [12]: A family \mathscr{P} of subsets of a space X is called a k-cover for X if whenever K is compact in X, then K is covered by some finite subset of \mathscr{P} . k-covers are a basic tool in the theory of convergence properties and metrization theorems on function spaces. All this shows that k-systems, k-networks and k-covers are very interesting in study of mapping theory. In this paper the relationships among mk-systems, k-networks and k-covers are further discussed and are established by mk-systems. As applications, some new characterizations of quotient or closed images of locally compact metric spaces are given by means of mk-systems.

We recall some basic definitions. Let $f: X \to Y$ be a map.

- (1) f is an s-map if $f^{-1}(y)$ is separable in X for any $y \in Y$;
- (2) f is a compact-covering map [13] if each compact subset of Y is an image of some compact subset of X under f.

A space X is called a k-space if it is determined by the cover consisting of all compact subsets of X. A space X is called a Fréchet space if, whenever $x \in \overline{A} \subset X$, there is a sequence $\{x_n\}$ in A with $x_n \to x$. Obviously, every Fréchet space is a k-space, and a space has a k-system if and only if it is a k-space. Every k-space is preserved by quotient maps, and every Fréchet space is preserved by closed maps.

Let \mathscr{P} be a family of subsets of a space X and denote \mathscr{P} by $\{P_{\alpha}\}_{\alpha \in \Lambda}$. \mathscr{P} is said to be point-countable if every point of X belongs to at most countably many elements of \mathscr{P} . \mathscr{P} is said to be closure-preserving if $\bigcup_{\alpha \in \Lambda'} \overline{P}_{\alpha} = \overline{\bigcup_{\alpha \in \Lambda'} P}_{\alpha}$ for each $\Lambda' \subset \Lambda$. \mathscr{P} is said to be hereditarily closure-preserving (briefly, HCP) if $\bigcup_{\alpha \in \Lambda} \overline{Q}_{\alpha} = \overline{\bigcup_{\alpha \in \Lambda} Q}_{\alpha}$ whenever $Q_{\alpha} \subset P_{\alpha}$ for each $\alpha \in \Lambda$. A σ -hereditarily closure-preserving (briefly, σ -HCP) family is a collection that is the union of countably many hereditarily closurepreserving families.

Obviously, if \mathscr{P} is an HCP-cover of closed subsets of a space X, then X is determined by \mathscr{P} . In this paper, all spaces are *Hausdorff* spaces, and all maps are continuous and onto. \mathbb{N} denotes the natural number set. Refer to [6] for terms which are not defined here.

2. Results

First of all, we discuss some relationships among mk-systems, k-networks and k-covers about point-countable covers. Y. Tanaka [17] proved that every point-countable k-system is a k-cover.

Lemma 1. Suppose X is a k-space with a k-cover \mathscr{P} consisting of compact subsets of X, then \mathscr{P} is a k-system of X.

Proof. It is sufficient to show that X is determined by the cover \mathscr{P} . Suppose that there exists a non-closed subset F of X such that $F \cap P$ is closed in X for each $P \in \mathscr{P}$. Since X is a k-space, $F \cap C$ is not closed in X for some compact subset C of X, and so $C \subset \bigcup \mathscr{P}'$ for some finite $\mathscr{P}' \subset \mathscr{P}$. However, $F \cap C =$ $\{(F \cap P) \cap C \colon P \in \mathscr{P}'\}$ is closed in X, a contradiction. Hence X is determined by \mathscr{P} , and \mathscr{P} is a k-system of X.

Lemma 2. If X has a point-countable k-cover consisting of metric closed subspaces, then it has a point-countable closed k-network consisting of metric subspaces.

Proof. Let $\mathscr{P} = \{P_{\alpha}\}_{\alpha \in \Lambda}$ be a point-countable k-cover for X, where each P_{α} is a metric closed subspace of X. Then each P_{α} has a point-countable closed k-network \mathscr{P}_{α} by Nagata-Smirnov metrization theorem [6]. Put $\mathscr{P}' = \bigcup_{\alpha \in \Lambda} \mathscr{P}_{\alpha}$. Then \mathscr{P}' is a point-countable cover consisting of metric closed subsets of X. We shall show that \mathscr{P}' is a k-network for X. For any $K \subset U$ with K compact and U open in X, since \mathscr{P} is a k-cover for X, $K \subset \bigcup_{\alpha \in \Lambda'} P_{\alpha}$ for some finite $\Lambda' \subset \Lambda$. For any $\alpha \in \Lambda'$, since \mathscr{P}_{α} is a k-network for $P_{\alpha}, K \cap P_{\alpha} \subset \bigcup \mathscr{P}'_{\alpha} \subset U \cap P_{\alpha}$ for some finite $\mathscr{P}'_{\alpha} \subset \mathscr{P}_{\alpha}$. Let $\mathscr{P}'' = \bigcup_{\alpha \in \Lambda'} \mathscr{P}'_{\alpha}$. Then \mathscr{P}'' is a finite subset of \mathscr{P}' , and $K \subset \bigcup \mathscr{P}'' \subset U$. Thus \mathscr{P}' is a k-network for X.

The following example shows that the closedness of subsets is essential in Lemma 2.

Example 3. The Gillman-Jerison space $\psi(\mathbb{N})$ [2]: A locally compact space has a finite k-cover consisting of metric subspaces, which is not meta-Lindelöf.

Proof. Let \mathscr{A} be a maximal almost disjoint family of \mathbb{N} . Let $\psi(\mathbb{N}) = \mathscr{A} \cup \mathbb{N}$ and describe a topology on $\psi(\mathbb{N})$ as follows: The points of \mathbb{N} are isolated; basic neighborhoods of a point $A \in \mathscr{A}$ are sets of the form $\{A\} \cup (A \setminus F)$ where F is a finite subset of \mathbb{N} . Then $\psi(\mathbb{N})$ is a locally compact space which is not meta-Lindelöf [2].

Let $\mathscr{P} = \{\mathscr{A}\} \cup \{\mathbb{N}\}$. Then \mathscr{P} is a k-cover for $\psi(\mathbb{N})$ because it is finite. Since \mathscr{A} is a closed discrete subset of $\psi(\mathbb{N})$, \mathscr{P} is a k-cover consisting of metric subspaces. Since a locally compact space with a point-countable k-network has a point-countable base by Corollary 3.6 in [7], $\psi(\mathbb{N})$ has no point-countable k-network.

Theorem 4. The following are equivalent for a space X:

- (1) X has a point-countable mk-system;
- (2) X is a k-space with a point-countable k-cover consisting of metric compact subspaces of X;
- (3) X is a k-space with a point-countable compact k-network;
- (4) X is a k-space with a point-countable closed k-network, and every first countable closed subspace of X is locally compact;
- (5) X is a (compact-covering and) quotient s-image of a locally compact metric space.

Proof. (1) \Leftrightarrow (2) by Proposition 2.1 in [9], (2) \Rightarrow (3) by Lemma 2, (3) \Leftrightarrow (4) by Lemma 2.1 in [11] and Theorem 4.1 in [7], and (1) \Leftrightarrow (5) by Theorem 1 in [10].

 $(3) \Rightarrow (1)$. Suppose that \mathscr{P} is a point-countable compact k-network for X. Each element of \mathscr{P} is metrizable by Corollary 3.7 in [7]. Since every k-network is a k-cover, and X is a k-space, \mathscr{P} is a mk-system by Lemma 1.

The following examples show that the condition "k-spaces" and "metrizable properties" are essential in Theorem 4.

- (1) Let $\beta \mathbb{N}$ be the Stone-Čech compactification of \mathbb{N} , $p \in \beta \mathbb{N} \setminus \mathbb{N}$, and $X = \mathbb{N} \cup \{p\}$ with a subspace topology of $\beta \mathbb{N}$. Then every compact set of X is finite, thus X is a non-k-space with a point-countable compact k-network.
- (2) M. Sakai [15] or Huaipeng Chen [4] constructed a space Y such that Y has a point-countable closed k-network and every first countable closed subspace of Y is compact, but Y has no point-countable compact k-network.
- (3) $\beta \mathbb{N}$ is a k-space with a k-cover $\{\beta \mathbb{N}\}$, which is not metrizable. By Tanaka's theorem the following corollary holds.

Corollary 5. The following are equivalent for a space *X*:

- (1) X is a closed s-image of a locally compact metric space;
- (2) X is a Fréchet space with a point-countable mk-system;
- (3) X is a Fréchet space with a point-countable compact k-network.

Question 6. Let X be a regular and Fréchet space with a point-countable k-network. Is X a space with a point-countable k-network consisting of separable subsets of X if every first countable closed subspace of X is locally separable?

Next, we discuss some relationships among mk-systems, k-networks and k-covers about HCP-families. The following example states that point-countable families cannot be replaced by σ -closure-preserving families in Lemma 2 or Theorem 4.

Example 7. There is a space X with a closure-preserving mk-system, but X having no σ -closure-preserving network.

Proof. The fact can be showed by Example 3.1 in [3]. Let \mathbb{I} be the closed unit interval, and $X = \mathbb{I} \times \mathbb{I}$. The set X is endowed with the following topology: each point in $\mathbb{I} \times (0, 1]$ is isolated in X; the local base of point $(s, 0) \in X$ consists of the sets of the form $V \times \mathbb{I} \setminus (\{s\} \times (0, 1])$ for each $s \in \mathbb{I}$, where V is a neighborhood of s in \mathbb{I} . Then X is a regular and first countable space with a closed map $f: X \to \mathbb{I}$ with no Lindelöf fibre [3]. Thus X has no σ -closure-preserving network by Theorem 1.1 in [3].

Let $\mathscr{S} = \{\{(x_n, y_n): n \in \mathbb{N}\}: \{x_n\} \text{ is a convergent sequence in } \mathbb{I} \text{ with all } x_n\text{'s distinct and } y_n \in (0, 1]\}, Y = \mathbb{I} \times \{0\}, \text{ and } \mathscr{P} = \{Y\} \cup \{Y \cup S: S \in \mathscr{S}\}.$

For each $S \in \mathscr{S}$, then \overline{S} is metric and compact in X, thus $Y \cup S$ is a compact and metric subspace of X, hence \mathscr{P} is a compact and metric cover of X. If \mathscr{P}' is a subset of \mathscr{P} , then $Y \subset \bigcup \mathscr{P}'$, so $\bigcup \mathscr{P}'$ is closed in X, hence \mathscr{P} is closure-preserving in X. Suppose a subset A of X is such that $P \cap A$ is closed in P for each $P \in \mathscr{P}$, we shall show that A is closed in X. Let $z \in X \setminus A$. If $z \notin Y$, then $\{z\}$ is open and $\{z\} \cap A = \emptyset$. If $z = (s, 0) \in Y$, put $Z = A \cap Y$, then Z is closed, and $z \notin Z$, thus there exists an open neighborhood V of s in I with $\overline{V \times \{0\}} \cap Z = \emptyset$. Let $D = \{x \in \mathbb{I} : \text{there is } y \in \mathbb{I} \text{ such that } (x, y) \in A \cap (V \times \mathbb{I})\}, \text{ then } D \text{ is finite. If}$ not, there is a sequence $\{(x_n, y_n)\}$ in A such that each $x_n \in V$, all x'_n s are distinct and $y_n \in (0,1]$ because $(V \times \{0\}) \cap Z = \emptyset$. We can assume that the sequence $\{x_n\}$ is convergent to $x_0 \in \mathbb{I}$, then $x_0 \in \overline{V}$, thus the sequence $\{(x_n, y_n)\}$ converges to $(x_0, 0)$ in X. Take $S = \{(x_n, y_n): n \in \mathbb{N}\}$, then $S \in \mathscr{S}$ and $(Y \cup S) \cap A = Z \cup S$. Since $(x_0, 0) \notin Z$, $(Y \cup S) \cap A$ is not closed, a contradiction. This shows that D is finite, so there exists an open neighborhood V' of s in I with $V' \subset V$ and $(V' \times \mathbb{I} \setminus (\{s\} \times (0,1])) \cap A = \emptyset$, hence A is closed in X. Therefore, X is determined by \mathscr{P} , and X has a closure-preserving mk-system.

Lemma 8. If X has a σ -HCP k-cover consisting of metric closed subspaces, then it has a σ -HCP closed k-network consisting of metric subspaces.

Proof. Suppose $\mathscr{P} = \bigcup_{n \in \mathbb{N}} \mathscr{P}_n$ is a σ -HCP k-cover consisting of metric closed subspaces of X, where each \mathscr{P}_n is HCP. We can assume that each $\mathscr{P}_n \subset \mathscr{P}_{n+1}$, and put $X_n = \bigcup \mathscr{P}_n$, $Z_n = \bigoplus \mathscr{P}_n$, and let $f_n \colon Z_n \to X_n$ be the natural map. Then Z_n is a metric space, and f_n is a closed map because \mathscr{P}_n is HCP. By the Nagata-Smirnov metrization theorem, Z_n has a σ -locally finite closed k-network \mathscr{Q}_n . Put $\mathscr{R} = \bigcup_{n \in \mathbb{N}} f_n(\mathscr{Q}_n)$. Then \mathscr{R} is a σ -HCP cover consisting of closed subsets of X by the closeness of the map f_n . If K is compact in X, then $K \subset X_m$ for some $m \in \mathbb{N}$. In fact, suppose not, then $K \setminus X_n \neq \emptyset$ for each $n \in \mathbb{N}$, and so there exists a sequence $\{x_i\}$ in K such that each $x_i \in X_{n_{i+1}} \setminus X_{n_i}$ and $n_i < n_{i+1}$. If D is a subset of $\{x_i \colon i \in \mathbb{N}\}$ and $P \in \mathscr{P}$, then $P \in \mathscr{P}_{n_k}$ for some $k \in \mathbb{N}$, thus $D \cap P \subset \{x_i \colon i < k\}$ is finite.

By Lemma 1, K is determined by $\mathscr{P}_{|K} = \{P \cap K \colon P \in \mathscr{P}\}, D$ is closed in K, thus $\{x_i: i \in \mathbb{N}\}\$ is an infinite discrete subset of K, a contradiction to the compactness of K. We shall show that \mathscr{R} is a k-network for X. For each $K \subset V$ with K compact and V open in X, then $K \subset X_m$ for some $m \in \mathbb{N}$. Since f_m is a closed map, f_m is compact-covering [13], i.e., there exists a compact subset L in Z_m such that $f_m(L) = K$. Because \mathscr{Q}_m is a k-network for Z_m , so $L \subset \bigcup \mathscr{Q}'_m \subset f_m^{-1}(X_m \cap V)$ for some finite subset \mathscr{Q}'_m of \mathscr{Q}_m . Thus $K \subset \bigcup f_m(\mathscr{Q}'_m) \subset V$. Hence \mathscr{R} is a σ -HCP closed k-network consisting of metric subspaces. \square

The Gillman-Jerison space $\psi(\mathbb{N})$ in Example 3 shows that the closedness of subsets is essential in Lemma 8 because $\psi(\mathbb{N})$ has not any σ -HCP k-network by Corollary 6 in [5].

Theorem 9. The following are equivalent for a space X:

- (1) X has a σ -HCP mk-system;
- (2) X is a k-space with a σ -HCP k-cover consisting of metric compact subspaces of X;
- (3) X is a k-space with a σ -HCP compact k-network;
- (4) X is a k-space with a σ -HCP closed k-network, and every first countable closed subspace of X is locally compact.

Proof. (3) \Rightarrow (1). Suppose \mathscr{P} is a σ -HCP compact k-network for a k-space X. By Lemma 1, \mathscr{P} is a k-system for X. Since X has a σ -HCP k-network, X is a σ -space (i.e., a regular space with a σ -locally finite network), and so each compact subset of X is metrizable [6]. Thus \mathscr{P} is a σ -HCP mk-system for X.

 $(1) \Rightarrow (2)$. Suppose \mathscr{P} is a σ -HCP mk-system for X, then X is a k-space. \mathscr{P} is a σ -HCP k-cover consisting of metric compact subspaces of X by Proposition 2.1 in [8].

 $(2) \Rightarrow (3)$ by Lemma 8, and $(3) \Leftrightarrow (4)$ by Theorem 3.1 in [11].

Corollary 10. The following are equivalent for a space X:

- (1) X is a closed image of a locally compact metric space;
- (2) X is a Fréchet space with a σ -HCP mk-system;
- (3) X has a HCP mk-system;
- (4) X is a Fréchet space with a σ -HCP compact k-network.

(2) \Leftrightarrow (4) by Theorem 9, (1) \Leftrightarrow (4) by Corollary 3.2 in [11], and Proof. $(2) \Leftrightarrow (3)$ by the proof of Theorem 2.5 in [8].

References

- A. Arhangel'skiž: On quotient mappings of metric spaces. Dokl. Akad. Nauk. SSSR 155 (1964), 247–250. (In Russian.)
 Zbl 0129.38104
- [2] D. K. Burke: Covering properties. Handbook of Set-theoretic Topology (K. Kunen, J. E. Vaughan, eds.). North-Holland, 1984, pp. 347–422.
 Zbl 0569.54022
- [3] J. Chaber: Generalizations of Lašnev's theorem. Fund. Math. 119 (1983), 85–91.

[4] Huaipeng Chen: On s-images of metric spaces. Topology Proc. 24 (1999), 95–103. Zbl 0962.54025

- [5] L. Foged: A characterization of closed images of metric spaces. Proc. Amer. Math. Soc. 95 (1985), 487–490.
 Zbl 0592.54027
- [6] G. Gruenhage: Generalized metric spaces. In: Handbook of Set-theoretic Topology (K. Kunen, J. E. Vaughan, eds.). North-Holland, 1984, pp. 423–501. Zbl 0555.54015
- [7] G. Gruenhage, E. Michael, and Y. Tanaka: Spaces determined by point-countable covers. Pacific J. Math. 113 (1984), 303–332.
 Zbl 0561.54016
- [8] Jinjin Li: k-covers and certain quotient images of paracompact locally compact spaces. Acta Math. Hungar. 95 (2002), 281–286.
 Zbl 0996.54036
- [9] Jinjin Li, Shou Lin: Spaces with compact-countable k-systems. Acta Math. Hungar. 93 (2001), 1–6. Zbl 0981.54014
- [10] Zhaowen Li, Jinjin Li: On Michael-Nagami's problem. Questions Answers in General Topology 12 (1994), 85–91.
 Zbl 0797.54039
- [11] Shou Lin: On spaces with a k-network consisting of compact subsets. Topology Proc. 20 (1995), 185–190. Zbl 0869.54025
- [12] R. A. McCoy, I. Ntantu: Countability properties of function spaces with set-open topologies. Topology Proc. 10 (1985), 329–345.
 Zbl 0619.54010
- [13] E. Michael: A note on closed maps and compact sets. Israel J. Math. 2 (1964), 173–176. Zbl 0136.19303
- P. O'Meara: On paracompactness in function spaces with the compact-open topology. Proc. Amer. Math. Soc. 29 (1971), 183–189.
 Zbl 0214.21105
- [15] M. Sakai: On spaces with a point-countable compact k-network. Yokohama Math. J. 48 (2000), 13–16.
 Zbl 0964.54023
- [16] Y. Tanaka: Closed images of locally compact spaces and Fréchet space. Topology Proc. 7 (1982), 279–292. Zbl 0525.54009
- [17] Y. Tanaka: Point-countable k-systems and products of k-spaces. Pacific J. Math. 101 (1982), 199–208. Zbl 0498.54023
- [18] Y. Tanaka: Theory of k-networks II. Questions Answers in General Topology 19 (2001), 27–46. Zbl 0970.54023

Authors' addresses: Jinjin Li, Department of Mathematics, Zhangzhou Teachers' College, Zhangzhou 363000, P.R. China, e-mail: jinjinli@fjzs.edu.cn; Shou Lin, Department of Mathematics, Fujian Normal University, Fuzhou 350007, P.R. China, currently: Department of Mathematics, Ningde Teachers College, Ningde 352100, P.R. China, e-mail: linshou@public.ndptt.fj.cn.