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Abstract. The concepts of k-systems, k-networks and k-covers were defined by A. Arhan-
gel’skǐı in 1964, P. O’Meara in 1971 and R. McCoy, I. Ntantu in 1985, respectively. In this
paper the relationships among k-systems, k-networks and k-covers are further discussed and
are established by mk-systems. As applications, some new characterizations of quotients or
closed images of locally compact metric spaces are given by means of mk-systems.
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1. Introduction

Let X be a topological space andP a cover of X . X is determined byP if F ⊂ X

is closed in X if and only if F ∩ P is closed in P for every P ∈ P [7]. P is called a

k-system (resp. mk-system) of X [1] (resp. [10]) if X is determined by P and each

element of P is compact (resp. metric and compact) in X . P is called a k-network

for X if, whenever K ⊂ U with K compact and U open in X , then K ⊂
⋃

P ′ ⊂ U

for some finite P ′ ⊂ P [14]. P is called a compact (resp. closed) k-network if

P is a k-network for X and each element of P is compact (resp. closed) in X .

k-systems and k-networks play an important role in quotient images of metric spaces

and generalized metric spaces [18]. For example, Zhaowen Li and Jinjin Li [10] partly

answered the Michael-Nagami’s problem by mk-systems; Shou Lin [11] obtained new

characterizations of generalized metric spaces by compact k-networks; Y. Tanaka [16]

proved the following interesting result.
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Tanaka’s Theorem. A Hausdorff space is a closed s-image of a locally compact

metric space if and only if it is a Fréchet space which is determined by a point-

countable cover of metric compact subspaces.

A generalization of the concept of k-networks is the following one of k-covers in-

troduced by McCoy and Ntantu in [12]: A familyP of subsets of a space X is called

a k-cover for X if whenever K is compact in X , then K is covered by some finite

subset of P . k-covers are a basic tool in the theory of convergence properties and

metrization theorems on function spaces. All this shows that k-systems, k-networks

and k-covers are very interesting in study of mapping theory. In this paper the rela-

tionships among mk-systems, k-networks and k-covers are further discussed and are

established by mk-systems. As applications, some new characterizations of quotient

or closed images of locally compact metric spaces are given by means of mk-systems.

We recall some basic definitions. Let f : X → Y be a map.

(1) f is an s-map if f−1(y) is separable in X for any y ∈ Y ;

(2) f is a compact-covering map [13] if each compact subset of Y is an image of

some compact subset of X under f .

A space X is called a k-space if it is determined by the cover consisting of all

compact subsets of X . A space X is called a Fréchet space if, whenever x ∈ Ā ⊂ X ,

there is a sequence {xn} in A with xn → x. Obviously, every Fréchet space is a

k-space, and a space has a k-system if and only if it is a k-space. Every k-space is

preserved by quotient maps, and every Fréchet space is preserved by closed maps.

LetP be a family of subsets of a space X and denoteP by {Pα}α∈Λ. P is said to

be point-countable if every point of X belongs to at most countably many elements

of P . P is said to be closure-preserving if
⋃

α∈Λ′

Pα =
⋃

α∈Λ′

Pα for each Λ′ ⊂ Λ.

P is said to be hereditarily closure-preserving (briefly, HCP) if
⋃

α∈Λ

Q̄α =
⋃

α∈Λ

Qα

whenever Qα ⊂ Pα for each α ∈ Λ. A σ-hereditarily closure-preserving (briefly,

σ-HCP) family is a collection that is the union of countably many hereditarily closure-

preserving families.

Obviously, if P is an HCP-cover of closed subsets of a space X , then X is de-

termined by P . In this paper, all spaces are Hausdorff spaces, and all maps are

continuous and onto.
�
denotes the natural number set. Refer to [6] for terms which

are not defined here.
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2. Results

First of all, we discuss some relationships among mk-systems, k-networks and

k-covers about point-countable covers. Y. Tanaka [17] proved that every point-

countable k-system is a k-cover.

Lemma 1. Suppose X is a k-space with a k-cover P consisting of compact

subsets of X , then P is a k-system of X .
���������

. It is sufficient to show that X is determined by the cover P . Suppose

that there exists a non-closed subset F of X such that F ∩ P is closed in X for

each P ∈ P . Since X is a k-space, F ∩ C is not closed in X for some compact

subset C of X , and so C ⊂
⋃

P ′ for some finite P ′ ⊂ P . However, F ∩ C =

{(F ∩ P ) ∩ C : P ∈ P ′} is closed in X , a contradiction. Hence X is determined

by P , and P is a k-system of X . �

Lemma 2. If X has a point-countable k-cover consisting of metric closed sub-

spaces, then it has a point-countable closed k-network consisting of metric subspaces.
���������

. Let P = {Pα}α∈Λ be a point-countable k-cover for X , where each Pα

is a metric closed subspace of X . Then each Pα has a point-countable closed

k-network Pα by Nagata-Smirnov metrization theorem [6]. Put P ′ =
⋃

α∈Λ

Pα.

Then P
′ is a point-countable cover consisting of metric closed subsets of X . We

shall show that P ′ is a k-network for X . For any K ⊂ U with K compact and

U open in X , since P is a k-cover for X , K ⊂
⋃

α∈Λ′

Pα for some finite Λ′ ⊂ Λ.

For any α ∈ Λ′, since Pα is a k-network for Pα, K ∩ Pα ⊂
⋃

P ′
α
⊂ U ∩ Pα for

some finite P ′
α ⊂ Pα. Let P ′′ =

⋃

α∈Λ′

P ′
α. Then P ′′ is a finite subset of P ′, and

K ⊂
⋃

P ′′ ⊂ U . Thus P ′ is a k-network for X . �

The following example shows that the closedness of subsets is essential in Lemma 2.

Example 3. The Gillman-Jerison space ψ(
�
) [2]: A locally compact space has a

finite k-cover consisting of metric subspaces, which is not meta-Lindelöf.
���������

. Let A be a maximal almost disjoint family of
�
. Let ψ(

�
) = A ∪

�

and describe a topology on ψ(
�
) as follows: The points of

�
are isolated; basic

neighborhoods of a point A ∈ A are sets of the form {A}∪(A\F ) where F is a finite

subset of
�
. Then ψ(

�
) is a locally compact space which is not meta-Lindelöf [2].

LetP = {A }∪{
�
}. ThenP is a k-cover for ψ(

�
) because it is finite. Since A is

a closed discrete subset of ψ(
�
), P is a k-cover consisting of metric subspaces. Since

a locally compact space with a point-countable k-network has a point-countable base

by Corollary 3.6 in [7], ψ(
�
) has no point-countable k-network. �
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Theorem 4. The following are equivalent for a space X :

(1) X has a point-countable mk-system;

(2) X is a k-space with a point-countable k-cover consisting of metric compact

subspaces of X ;

(3) X is a k-space with a point-countable compact k-network;

(4) X is a k-space with a point-countable closed k-network, and every first countable

closed subspace of X is locally compact;

(5) X is a (compact-covering and) quotient s-image of a locally compact metric

space.

���������
. (1) ⇔ (2) by Proposition 2.1 in [9], (2) ⇒ (3) by Lemma 2, (3) ⇔ (4)

by Lemma 2.1 in [11] and Theorem 4.1 in [7], and (1) ⇔ (5) by Theorem 1 in [10].

(3) ⇒ (1). Suppose that P is a point-countable compact k-network for X . Each

element ofP is metrizable by Corollary 3.7 in [7]. Since every k-network is a k-cover,

and X is a k-space, P is a mk-system by Lemma 1. �

The following examples show that the condition “k-spaces” and “metrizable prop-

erties” are essential in Theorem 4.

(1) Let β
�
be the Stone-Čech compactification of

�
, p ∈ β

�
\
�
, and X =

�
∪ {p}

with a subspace topology of β
�
. Then every compact set of X is finite, thus

X is a non-k-space with a point-countable compact k-network.

(2) M. Sakai [15] or Huaipeng Chen [4] constructed a space Y such that Y has a

point-countable closed k-network and every first countable closed subspace of Y

is compact, but Y has no point-countable compact k-network.

(3) β
�
is a k-space with a k-cover {β

�
}, which is not metrizable.

By Tanaka’s theorem the following corollary holds.

Corollary 5. The following are equivalent for a space X :

(1) X is a closed s-image of a locally compact metric space;

(2) X is a Fréchet space with a point-countable mk-system;

(3) X is a Fréchet space with a point-countable compact k-network.

Question 6. Let X be a regular and Fréchet space with a point-countable

k-network. Is X a space with a point-countable k-network consisting of separable

subsets of X if every first countable closed subspace of X is locally separable?

Next, we discuss some relationships among mk-systems, k-networks and k-covers

about HCP-families. The following example states that point-countable families

cannot be replaced by σ-closure-preserving families in Lemma 2 or Theorem 4.

Example 7. There is a space X with a closure-preservingmk-system, but X hav-

ing no σ-closure-preserving network.
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���������
. The fact can be showed by Example 3.1 in [3]. Let 	 be the closed unit

interval, and X = 	 × 	 . The set X is endowed with the following topology: each
point in 	 × (0, 1] is isolated in X ; the local base of point (s, 0) ∈ X consists of the

sets of the form V × 	 \ ({s} × (0, 1]) for each s ∈ 	 , where V is a neighborhood of s
in 	 . Then X is a regular and first countable space with a closed map f : X → 	 with
no Lindelöf fibre [3]. Thus X has no σ-closure-preserving network by Theorem 1.1

in [3].

Let S = {{(xn, yn) : n ∈
�
} : {xn} is a convergent sequence in 	 with all xn’s

distinct and yn ∈ (0, 1]}, Y = 	 × {0}, and P = {Y } ∪ {Y ∪ S : S ∈ S }.

For each S ∈ S , then S is metric and compact in X , thus Y ∪ S is a compact

and metric subspace of X , hence P is a compact and metric cover of X . If P ′ is a

subset ofP , then Y ⊂
⋃

P ′, so
⋃

P ′ is closed in X , hence P is closure-preserving

in X . Suppose a subset A of X is such that P ∩ A is closed in P for each P ∈ P ,

we shall show that A is closed in X . Let z ∈ X \ A. If z /∈ Y , then {z} is open

and {z} ∩ A = ∅. If z = (s, 0) ∈ Y , put Z = A ∩ Y , then Z is closed, and z /∈ Z,

thus there exists an open neighborhood V of s in 	 with V × {0} ∩ Z = ∅. Let

D = {x ∈ 	 : there is y ∈ 	 such that (x, y) ∈ A ∩ (V × 	 )}, then D is finite. If
not, there is a sequence {(xn, yn)} in A such that each xn ∈ V , all x′ns are distinct

and yn ∈ (0, 1] because (V × {0}) ∩ Z = ∅. We can assume that the sequence {xn}

is convergent to x0 ∈ 	 , then x0 ∈ V , thus the sequence {(xn, yn)} converges to

(x0, 0) in X . Take S = {(xn, yn) : n ∈
�
}, then S ∈ S and (Y ∪ S) ∩ A = Z ∪ S.

Since (x0, 0) /∈ Z, (Y ∪ S) ∩ A is not closed, a contradiction. This shows that

D is finite, so there exists an open neighborhood V ′ of s in 	 with V ′ ⊂ V and

(V ′ × 	 \ ({s}× (0, 1])) ∩A = ∅, hence A is closed in X . Therefore, X is determined

by P , and X has a closure-preserving mk-system. �

Lemma 8. If X has a σ-HCP k-cover consisting of metric closed subspaces, then

it has a σ-HCP closed k-network consisting of metric subspaces.

���������
. Suppose P =

⋃

n∈ 

Pn is a σ-HCP k-cover consisting of metric closed

subspaces of X , where eachPn is HCP. We can assume that eachPn ⊂ Pn+1, and

put Xn =
⋃

Pn, Zn =
⊕

Pn, and let fn : Zn → Xn be the natural map. Then

Zn is a metric space, and fn is a closed map because Pn is HCP. By the Nagata-

Smirnov metrization theorem, Zn has a σ-locally finite closed k-network Qn. Put

R =
⋃

n∈ 

fn(Qn). Then R is a σ-HCP cover consisting of closed subsets of X by the

closeness of the map fn. If K is compact in X , then K ⊂ Xm for some m ∈
�
. In

fact, suppose not, thenK\Xn 6= ∅ for each n ∈
�
, and so there exists a sequence {xi}

in K such that each xi ∈ Xni+1
\Xni

and ni < ni+1. If D is a subset of {xi : i ∈
�
}

and P ∈ P , then P ∈ Pnk
for some k ∈

�
, thus D ∩ P ⊂ {xi : i < k} is finite.
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By Lemma 1, K is determined by P|K = {P ∩K : P ∈ P}, D is closed in K, thus

{xi : i ∈
�
} is an infinite discrete subset of K, a contradiction to the compactness

of K. We shall show that R is a k-network for X . For each K ⊂ V with K compact

and V open in X , then K ⊂ Xm for some m ∈
�
. Since fm is a closed map,

fm is compact-covering [13], i.e., there exists a compact subset L in Zm such that

fm(L) = K. Because Qm is a k-network for Zm, so L ⊂
⋃

Q′
m

⊂ f−1
m

(Xm ∩ V ) for

some finite subset Q′
m of Qm. Thus K ⊂

⋃
fm(Q′

m) ⊂ V . Hence R is a σ-HCP

closed k-network consisting of metric subspaces. �

The Gillman-Jerison space ψ(
�
) in Example 3 shows that the closedness of subsets

is essential in Lemma 8 because ψ(
�
) has not any σ-HCP k-network by Corollary 6

in [5].

Theorem 9. The following are equivalent for a space X :

(1) X has a σ-HCPmk-system;

(2) X is a k-space with a σ-HCP k-cover consisting of metric compact subspaces

of X ;

(3) X is a k-space with a σ-HCP compact k-network;

(4) X is a k-space with a σ-HCP closed k-network, and every first countable closed

subspace of X is locally compact.

���������
. (3) ⇒ (1). SupposeP is a σ-HCP compact k-network for a k-space X .

By Lemma 1, P is a k-system for X . Since X has a σ-HCP k-network, X is a

σ-space (i.e., a regular space with a σ-locally finite network), and so each compact

subset of X is metrizable [6]. Thus P is a σ-HCPmk-system for X .

(1) ⇒ (2). Suppose P is a σ-HCPmk-system for X , then X is a k-space. P is a

σ-HCP k-cover consisting of metric compact subspaces of X by Proposition 2.1 in [8].

(2) ⇒ (3) by Lemma 8, and (3) ⇔ (4) by Theorem 3.1 in [11]. �

Corollary 10. The following are equivalent for a space X :

(1) X is a closed image of a locally compact metric space;

(2) X is a Fréchet space with a σ-HCPmk-system;

(3) X has a HCPmk-system;

(4) X is a Fréchet space with a σ-HCP compact k-network.

���������
. (2) ⇔ (4) by Theorem 9, (1) ⇔ (4) by Corollary 3.2 in [11], and

(2) ⇔ (3) by the proof of Theorem 2.5 in [8]. �
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