

COVERING PROPERTIES OF *k*-SEMISTRATIFIABLE SPACES

SHOU LIN

ABSTRACT. k-semistratifiable spaces as a generalization of stratifiable spaces and \aleph -spaces have many important properties. In this paper, covering properties of k-semistratifiable spaces are discussed, and the following results are obtained: (1) every k-semistratifiable k-space is a hereditarily meta-Lindelöf space; (2) every k-semistratifiable, normal k-space is a hereditarily paracompact space.

Metric spaces have many good covering properties. Generalized metric spaces also have some similar covering properties. For example, M_1 -spaces are paracompact spaces and σ -spaces are subparacompact spaces. Frank Siwiec [17] posed the following questions:

(S1) Are *g*-metrizable spaces normal spaces?

(S2) Are normal *g*-metrizable spaces paracompact spaces?

(S3) Are separable g-metrizable spaces the spaces with a countable weak base?

Can (S3) be changed to ask the following question?

(S4) Are *g*-metrizable spaces meta-Lindelöf spaces?

N. N. Jakovlev [9] announced the positive answers of questions (S2), (S3), and (S4). L. Foged [3], [5] discussed some equivalent conditions of g-metrizable spaces, established normality and covering properties in k- and \aleph -spaces, and answered all of Siwiec's questions. He proved

²⁰⁰⁰ Mathematics Subject Classification. 54E20; 54D20; 54D55.

 $Key\ words\ and\ phrases.\ k-semistratifiable\ spaces;\ k-spaces;\ meta-Lindelöf\ spaces;\ paracompact\ spaces.$

Supported by the NNSF of China (10271026).

(F1) there is a non-normal g-metrizable space;

(F2) under (MA+ \neg CH), there is a regular, non-monotonically normal space with a countable weak base;

(F3) every normal, k-space with a σ -locally finite k-network is a paracompact space;

(F4) every regular, k-space with a σ -locally finite k-network is a hereditarily meta-Lindelöf space.

Chuan Liu [12] and Liang-Xue Peng [16] proved that a result similar to (F3) and (F4), respectively, held for regular spaces with a σ -hereditarily closure-preserving k-network. Do the results hold for regular spaces with a σ -closure-preserving k-network? The regular spaces with a σ -closure-preserving k-network are k-semistratifiable spaces. In this paper, we shall further show that results similar to (F3) and (F4) hold for k-semistratifiable spaces. By a space we mean a *Hausdorff* topological space. Recalled below are some related concepts. Refer to [1] or [8] for terms which are not defined here.

Definition 1. Let X be a space.

(1) For $F \subset P \subset X$, P is said to be a sequential neighborhood of F in X if every sequence converging to a point of F is eventually in P.

(2) X is said to be a sequential space [6] if whenever a subset A of X is a sequential neighborhood of A, then A is open in X.

(3) X is said to be a k-space if whenever $K \cap A$ is closed in K for each compact subset K of X, then A is closed in X.

Definition 2 ([13]). A space X is said to be k-semistratifiable if for each open subset U of X there is a sequence $\{F(n,U)\}_{n\in\mathbb{N}}$ of closed subsets of X such that

- (1) $U = \bigcup_{n \in \mathbb{N}} F(n, U);$
- (2) if $V \subset U$, then $F(n, V) \subset F(n, U)$;
- (3) if a compact subset $K \subset U$, then $K \subset F(m, U)$ for some $m \in \mathbb{N}$.

The correspondence $U \to \{F(n, U)\}_{n \in \mathbb{N}}$ is said to be a *k*-semistratification for the space X.

Let \mathcal{P} be a family of subsets of a space X. \mathcal{P} is said to be a *discrete family* of X if there is an open neighborhood U of x in X such that U meets at most some element of \mathcal{P} for each $x \in X$. \mathcal{P} is

said to be a closure-preserving family of X if $\overline{\cup P'} = \bigcup \{\overline{P} : P \in \mathcal{P}'\}$ for each $\mathcal{P}' \subset \mathcal{P}$. Obviously, a discrete family of a space X is closure-preserving. It is easy to check in [8] or [18]:

Metric spaces \implies g-metrizable spaces \implies sequential spaces \implies k-spaces

\Downarrow	\Downarrow
M_1 -spaces	$\aleph\text{-spaces}$
\Downarrow	\Downarrow

stratifiable spaces \implies regular spaces with a σ -closure-preserving k-network

k-semistratifiable spaces \implies subparacompact spaces.

Theorem 1. Every k-semistratifiable k-space is a hereditarily meta-Lindelöf space.

Proof: Suppose that X is a k-semistratifiable k-space and $U \rightarrow$ $\{F(n,U)\}_{n\in\mathbb{N}}$ a k-semistratification for the space X. We can assume that each $F(n,U) \subset F(n+1,U)$. To complete the proof, it suffices to show that every open subspace of X is a meta-Lindelöf space [1]. Since the property of k-semistratifiable k-spaces is open hereditary [2], [13], we prove only that X is a meta-Lindelöf space.

(1) Every discrete family of closed subsets may be expanded to a point-countable family of open subsets of X.

Let \mathcal{F} be a family of closed subsets of X. Put $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$. For each $\alpha \in \Lambda$, put

 $P_{\alpha}(\emptyset) = P_{\alpha}^{*}(\emptyset) \setminus \overline{\bigcup_{\beta \in \Lambda \setminus \{\alpha\}} P_{\beta}^{*}(\emptyset)},$ $P^*_{\alpha}(\emptyset) = F_{\alpha},$ and $\mathcal{P}(\emptyset) = \{ P_{\alpha}(\emptyset) : \alpha \in \Lambda \}.$

For a finite sequence δ of \mathbb{N} , if $\mathcal{P}(\delta)$ has been defined and $n \in \mathbb{N}$, we shall define $\mathcal{P}(\delta n)$ as follows:

Denote $\mathcal{P}(\delta)$ by $\{P_{\alpha}(\delta) : \alpha \in \Lambda\}$. For each $\alpha \in \Lambda$, put $P_{\alpha}^{*}(\delta n) = F(n, X \setminus \overline{\bigcup_{\beta \in \Lambda \setminus \{\alpha\}} P_{\beta}^{*}(\delta)}),$ $P_{\alpha}(\delta n) = P_{\alpha}^{*}(\delta n) \setminus \overline{\bigcup_{\beta \in \Lambda \setminus \{\alpha\}} P_{\beta}^{*}(\delta n)},$ $\mathcal{P}(\delta n) = \{P_{\alpha}(\delta n) : \alpha \in \Lambda\}.$ and

Let $U_{\alpha} = \bigcup \{ P_{\alpha}(\delta) : \delta \text{ is a finite sequence of } \mathbb{N} \}, \mathcal{U} = \{ U_{\alpha} : \alpha \in \Lambda \}.$ We shall show that \mathcal{U} is the desired family.

First, $F_{\alpha} = P_{\alpha}(\emptyset) \subset U$ for each $\alpha \in \Lambda$.

Since X is a k-space with a point- G_{δ} property, X is a sequential space [11]. To show that each U_{α} is open, it suffices to show that U_{α} is a sequential neighborhood of U_{α} . Let S be a sequence converging to $x \in U_{\alpha}$. There is a finite sequence δ of N such that $x \in P_{\alpha}(\delta)$. Put $M_{\alpha} = \bigcup_{\beta \in \Lambda \setminus \{\alpha\}} P_{\beta}^{*}(\delta)$. Then $x \notin M_{\alpha}$, and thus S is eventually in $F(m, X \setminus M_{\alpha}) = P_{\alpha}^{*}(\delta m)$ for some $m \in$ N. If $x \in \bigcup_{\beta \in \Lambda \setminus \{\alpha\}} P_{\beta}^{*}(\delta m)$, then $x \in \bigcup_{\beta \in \Lambda \setminus \{\alpha\}} F(m, X \setminus M_{\beta}) \subset$ $F(m, \bigcup_{\beta \in \Lambda \setminus \{\alpha\}} P_{\alpha}(\delta) for some \beta \in \Lambda \setminus \{\alpha\}$, a contradiction. Hence, $x \in X \setminus \bigcup_{\beta \in \Lambda \setminus \{\alpha\}} P_{\beta}^{*}(\delta m)$, and S is eventually in $P_{\alpha}(\delta m) \subset U_{\alpha}$, so U_{α} is a sequential neighborhood of U_{α} .

If \mathcal{U} is not point-countable, then $|\{\alpha \in \Lambda : x \in U_{\alpha}\}| > \omega$ for some $x \in X$; thus, there are a finite sequence δ of \mathbb{N} and an uncountable subset Λ' of Λ such that $x \in P_{\alpha}(\delta)$ for each $\alpha \in \Lambda'$, a contradiction because $\{P_{\alpha}(\delta) : \alpha \in \Lambda\}$ is disjoint.

(2) X is a meta-Lindelöf space.

Let \mathcal{W} be an open cover of the space X. By the subparacompactness of X, \mathcal{W} has a refinement $\bigcup_{i \in \mathbb{N}} \mathcal{F}_i$, where each $\mathcal{F}_i = \{F_{i\alpha} : \alpha \in \Lambda_i\}$ is a discrete family of closed subsets of X. For each $i \in \mathbb{N}$, \mathcal{F}_i may be expanded to a point-countable family $\mathcal{U}_i = \{U_{i\alpha} : \alpha \in \Lambda_i\}$ of open subsets of X from (1). Take $W_{i\alpha} \in \mathcal{W}$ such that $F_{i\alpha} \subset W_{i\alpha}$ for each $\alpha \in \Lambda_i$. Then $\bigcup_{i \in \mathbb{N}, \alpha \in \Lambda_i} W_{i\alpha} \cap U_{i\alpha}$ is a point-countable open refinement of \mathcal{W} ; thus, X is a meta-Lindelöf space.

To find a paracompactness of k-semistratifiable spaces, we state a fine k-semistratification.

Lemma 1. Let X be a k-semistratifiable space. Then for each subset W of X there is a sequence $\{H(n, W)\}_{n \in \mathbb{N}}$ of closed subsets of X such that

(1) $H(n, W) \subset H(n+1, W) \subset W;$

- (2) if $V \subset W$, then $H(n, V) \subset H(n, W)$;
- (3) if W is a sequential neighborhood of x, then every sequence converging to x is eventually in H(m, W) for some $m \in \mathbb{N}$;
- (4) if $\{G_{\alpha} : \alpha \in \Lambda\}$ is a disjoint family of subsets of X and $n \in \mathbb{N}$, then $\{H(n, G_{\alpha}) : \alpha \in \Lambda\}$ is a discrete family in X.

Proof: Let $U \to \{F(n,U)\}_{n \in \mathbb{N}}$ be a k-semistratification for X. We can assume that each $F(n,U) \subset F(n+1,U)$. For each $n \in \mathbb{N}$

and $x \in X$, define that $g(n, x) = X \setminus F(n, X \setminus \{x\})$, then g(n, x)is open in X and $x \in g(n + 1, x) \subset g(n, x)$. For each $n \in \mathbb{N}$ and $W \subset X$, put $H(n, W) = X \setminus \bigcup_{x \in X \setminus W} g(n, x)$, then H(n, W) is closed in X and satisfies conditions (1) and (2).

Let W be a sequential neighborhood of x in X and a sequence $\{x_n\}$ converges to x. If (3) does not hold, then for each $i \in \mathbb{N}$, there is $x_{n_i} \in X \setminus H(i, W)$; thus, there is $y_i \in X \setminus W$ such that $x_{n_i} \in g(i, y_i)$. Let U be an open neighborhood of x. There are $k, m \in \mathbb{N}$ such that $\{x_{n_i} : i \geq k\} \subset F(m, U)$; thus, $y_i \in U$ for each $i \geq k$, and hence the sequence $\{y_i\}$ converges to x, a contradiction because W is a sequential neighborhood of x.

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be a disjoint family of subsets of X and $n \in \mathbb{N}$. For each $x \in X$, take $V = X \setminus H(n, \cup \{G_{\alpha} : \alpha \in \Lambda \text{ and } x \notin G_{\alpha}\})$, then V is an open neighborhood of x in X and $V \cap H(n, G_{\alpha}) = \emptyset$ if $x \notin G_{\alpha}$. Hence, $\{H(n, G_{\alpha}) : \alpha \in \Lambda\}$ is a discrete family of subsets of X. \Box

Theorem 2. Every k-semistratifiable, normal k-space is a hereditarily paracompact space.

Proof: Let X be a k-semistratifiable, normal k-space, and $W \to \{H(n,W)\}_{n\in\mathbb{N}}$ a correspondence of X satisfying all conditions in Lemma 1. By Definition 2, X is a perfect space (i. e., a space in which each closed subset is a G_{δ} -set). It is easy to check that a perfect paracompact space is a hereditarily paracompact space [1]. To complete the proof, it suffices to show that X is a paracompact space.

Let \mathcal{F} be a discrete family of closed subsets of X.

(1) \mathcal{F} may be expanded to a disjoint family of sequential neighborhoods.

Put $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$. For each $\alpha \in \Lambda$, let $L_{\alpha} = \bigcup_{\beta \in \Lambda \setminus \{\alpha\}} F_{\beta}$ and $G_{\alpha} = \bigcup_{n \in \mathbb{N}} (H(n, X \setminus L_{\alpha}) \setminus H(n, X \setminus F_{\alpha}))$. Then $\{G_{\alpha} : \alpha \in \Lambda\}$ is a disjoint family of subsets of X. We shall prove that each G_{α} is a sequential neighborhood of F_{α} .

Let S be a sequence converging to $x \in F_{\alpha}$. Since L_{α} is closed and $F_{\alpha} \cap L_{\alpha} = \emptyset$, S is eventually in $H(m, X \setminus L_{\alpha})$ for some $m \in \mathbb{N}$, and $x \notin H(m, X \setminus F_{\alpha})$, so we may assume that S is eventually in $H(m, X \setminus L_{\alpha}) \setminus H(m, X \setminus F_{\alpha}) \subset G_{\alpha}$; hence, G_{α} is a sequential neighborhood of F_{α} . (2) \mathcal{F} may be expanded to a discrete family of closed sequential neighborhoods.

S. LIN

For each $n \in \mathbb{N}$ and $\alpha \in \Lambda$, $H(n, X \setminus F_{\alpha}) \cap F_{\alpha} = \emptyset$. By normality, there is an open subset $V_{\alpha}(n)$ such that $F_{\alpha} \subset V_{\alpha}(n) \subset \overline{V_{\alpha}(n)} \subset X \setminus H(n, X \setminus F_{\alpha})$. Put $F_{\alpha}(n) = H(n, G_{\alpha}) \cap \overline{V_{\alpha}(n)}$ and $W_{\alpha} = \bigcup_{n \in \mathbb{N}} F_{\alpha}(n)$. Then W_{α} is a sequential neighborhood of F_{α} . In fact, if S is a sequence converging to $x \in F_{\alpha}$, S is eventually in $H(m, G_{\alpha})$ for some $m \in \mathbb{N}$ by (1) and Lemma 1, and S is eventually in $V_{\alpha}(m)$; thus, S is eventually in $F_{\alpha}(m) \subset W$.

Let $\mathcal{W} = \{W_{\alpha} : \alpha \in \Lambda\}$. Then \mathcal{W} is a disjoint family because of each $W_{\alpha} \subset G_{\alpha}$. To show that \mathcal{W} is a discrete family of closed subsets, it suffices to show that \mathcal{W} is a closure-preserving family of closed subsets, i. e., $\bigcup_{\alpha \in \Lambda'} W_{\alpha}$ is closed in X for each $\Lambda' \subset \Lambda$. Since X is a k-space with a point- G_{δ} property, X is a sequential space. Let S be a sequence converging to $x \notin \bigcup_{\alpha \in \Lambda'} W_{\alpha}$. Then $x \notin \bigcup_{\alpha \in \Lambda'} F_{\alpha}$, S is eventually in $H(m, X \setminus \bigcup_{\alpha \in \Lambda'} F_{\alpha})$ for some $m \in \mathbb{N}$, and $H(m, X \setminus F_{\alpha}) \cap F_{\alpha}(n) = \emptyset$ for each $\alpha \in \Lambda'$ and $n \ge m$. By Lemma 1, $\{H(n, G_{\alpha}) : \alpha \in \Lambda\}$ is a discrete family in X for each $n \in \mathbb{N}$, so $\{F_{\alpha}(n) : \alpha \in \Lambda\}$ is a discrete family of closed subsets of X. Put $E(m, \Lambda') = \bigcup_{\alpha \in \Lambda', n < m} F_{\alpha}(n)$. Then $E(m, \Lambda')$ is closed and $x \notin E(m, \Lambda')$; thus, S is eventually in $X \setminus E(m, \Lambda')$. Hence, S is eventually in $X \setminus \bigcup_{\alpha \in \Lambda'} W_{\alpha}$, and $\bigcup_{\alpha \in \Lambda'} W_{\alpha}$ is closed in X.

(3) X is a collectionwise normal space.

Let \mathcal{H}_1 be a discrete family of closed subsets of X. By (2), there is a sequence $\{\mathcal{H}_n\}$ of discrete families of closed subsets of Xsuch that each \mathcal{H}_{n+1} is an expansion of sequential neighborhoods of \mathcal{H}_n . Index \mathcal{H}_n by $\{H_\alpha(n) : \alpha \in \Lambda\}$ for each $n \in \mathbb{N}$. Put $\mathcal{H} = \{H_\alpha : \alpha \in \Lambda\}$, where each $H_\alpha = \bigcup_{n \in \mathbb{N}} H_\alpha(n)$. Suppose that S is a sequence converging to $x \in H_\alpha$. Then $x \in H_\alpha(j)$ for some $j \in \mathbb{N}$. Since $H_\alpha(j+1)$ is a sequential neighborhood of $H_\alpha(j)$, S is eventually in $H_\alpha(j+1) \subset H_\alpha$; hence, H_α is open in X. Therefore, \mathcal{H} is a disjoint open expansion of \mathcal{H}_1 , and X is a collectionwise normal space.

Since X is a subparacompact space, X is a paracompact space from (3). \Box

Zhi Min Gao [7] proved that a normal space with a σ -closurepreserving weak base is a paracompact space. It can be shown that

a regular space with a σ -closure-preserving weak base is a meta-Lindelöf space by a similar technique in [7] and Theorem 1. The author doesn't know whether a regular k-space with a σ -locally finite k-network (i.e., a k- and \aleph -space) has a σ -closure-preserving weak base.

References

- [1] Dennis K. Burke, "Covering Properties." Kunen and Vaughan 347–422.
- [2] Ryszard Engelking, *General Topology*. Translated from the Polish by the author. 2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag, 1989.
- [3] L. Foged, "On g-metrizability," Pacific J. Math. 98 (1982), no. 2, 327-332.
- [4] _____, "Sequential coreflections of stratifiable spaces," Proc. Amer. Math. Soc. 92 (1984), no. 3, 470–472.
- [5] _____, "Normality in k-and ℵ-spaces," Topology Appl. 22 (1986), no. 3, 223–240.
- [6] S. P. Franklin, "Spaces in which sequences suffice," Fund. Math. 57 (1965), 107–115.
- [7] Zhi Min Gao, "Some remarks on the spaces with a σ -closure-preserving weak-base," *Math. Japon.* **37** (1992), no. 2, 323–328. (MathSciNet locates the article by Min, Gao Zhi)
- [8] Gary Gruenhage, "Generalized Metric Spaces." Kunen and Vaughan 423– 501.
- [9] N. N. Jakovlev, "On g-metrizable spaces" (Russian), Dokl. Akad. Nauk. SSSR 226 (1976), no. 3, 530–532 (=Soviet Math. Dokl., 17 (1976), no. 1, 156–159).
- [10] Kenneth Kunen and Jerry E. Vaughan, eds. Handbook of Set-Theoretic Topology. Amsterdam: North-Holland, 1984.
- [11] Shou Lin, Generalized Metric Spaces and Maps (Chinese). Beijing: Science Press, 1995.
- [12] Chuan Liu, "Some notes on σ -hereditarily closure-preserving k-networks" (Chinese), Adv. in Math. (China) **24** (1995), no. 6, 558–560.
- [13] D. J. Lutzer, "Semimetrizable and stratifiable spaces," General Topology and Appl. 1 (1971), no. 1, 43–48.
- [14] T. Mizokami, "Some properties of k-semistratifiable spaces," Proc. Amer. Math. Soc. 108 (1990), no. 3, 535–539.
- [15] _____, "On the Closed Images of a Developable Space," Houston J. Math. 19 (1993), no. 3, 455–467.
- [16] Liang-Xue Peng, "The Hereditarily Metalindelöf Property of k-Spaces with σ-HCP Closed k-Networks," Topology Proc. 26 (2001-2002), no. 1, 307–310.

S. LIN

- [17] Frank Siwiec, "On defining a space by a weak base," Pacific J. Math. 52 (1974), 233–245.
- [18] Yoshio Tanaka, "Theory of k-networks II," Questions Answers Gen. Topology, 19 (2001), 27–46.

Department of Mathematics; Zhangzhou Teachers' College; Fujian 363000, P. R. China and

Department of Mathematics; Ningde Teachers' College; Fujian 352100, P. R. China

E-mail address: linshou@public.ndptt.fj.cn