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A NOTE ON SEQUENCE-COVERING
MAPPINGS

S. LIN (Zhangzhou)∗

Abstract. Let f : X → Y be a mapping. f is called a sequence-covering
mapping if in case S is a convergent sequence containing its limit point in Y then
there is a compact subset K of X such that f(K) = S. It is shown that each
quotient and compact mapping of a metric space is sequence-covering.

1. Introduction

In this paper all spaces are assumed to be Hausdorff and maps are contin-
uous and onto. A study of images of metric spaces under certain compact-
covering mappings is an important question in general topology [5, 8, 9].
Let f : X → Y be a mapping. f is called a compact-covering mapping [5]
if in case L is compact in Y there is a compact subset K of X such that
f(K) = L. f is called a compact (resp. s-)mapping if each f−1(y) is compact
(resp. separable) in X for each y ∈ Y . Chen [2] had proved that there is a
space which is a quotient and compact image of a locally separable metric
space and it is not any compact-covering quotient and s-image of a metric
space. It is shown that every quotient compact image of a (locally separable)
metric space is also a sequence-covering quotient compact image of a (locally
separable) metric space (under a different map, in general) [4, 6]; here a
mapping f : X → Y is called sequence-covering in the sense of Gruenhage,
Michael and Tanaka [5] if in case S is a convergent sequence containing its
limit point in Y then there is a compact subset K of X such that f(K) = S.
The question naturally arises whether every quotient compact mapping of a
(locally separable) metric space is sequence-covering [4, 6, 9]. This question
is positively answered in this paper.
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2. Main results

f : X → Y is called a sequentially quotient mapping [1] if in case {yn} is
a convergent sequence in Y then there are a subsequence {yni} of {yn} and
a convergent sequence {xi} in X such that each xi ∈ f−1(yni).

Lemma 2.1 [1]. Let f : X → Y be a mapping.
(1) If X is a sequential space and f is quotient, then f is sequentially

quotient.
(2) If Y is a Fréchet space and f is sequentially quotient, then f is

pseudo-open.

Theorem 2.2 . Let X be a metric space. If f : X → Y is a sequentially
quotient and compact mapping then f is sequence-covering.

Proof. Let a sequence {yn} converge to a point y0 in Y . We assume
without loss of generality that all yn, y0 are distinct. Denote S1 = {y0}
∪ {yn : n ∈ N}, and let X1 = f−1(S1), g = f|X1

. Then g is a sequentially
quotient and compact mapping from a metric space X1 onto S1. Since S1

is a Fréchet space, g is pseudo-open by 2.1. Let {Un : n ∈ N} be a de-
creasing neighborhood base of the compact subset g−1(y0) in X1. For each
n ∈ N, g−1(y0) ⊂ Un, thus y0 ∈ int

(
g(Un)

)
. Then there is in ∈ N such that

yi ∈ g(Un) as i = in, so g−1(yi)∩Un 6= ∅. We may assume that 1 < in < in+1.
For each j ∈ N, put

xj ∈

{
f−1(yj), if j < i1;

f−1(yj) ∩ Un, if in 5 j < in+1,

and K = g−1(y0)∪{xj : j ∈ N}. Since {Un : n ∈ N} is a neighborhood base
of g−1(y0) in Y and xj ∈ Un for each in 5 j < in+1, K is compact in X1 and
g(K) = S1, f(K) = S1. Hence f is sequence-covering.

Corollary 2.3. Every quotient and compact mapping of a metric space
is sequence-covering.

Proof. Let f : X → Y be a quotient and compact mapping such that
X is metric. Then f is a sequentially quotient mapping by 2.1, hence f is a
sequence-covering mapping by 2.2.

Let f : (X,d) → Y be a mapping with d a metric on X. f is a π-mapping
if for each y ∈ Y and a neighborhood U of y in Y , d

(
f−1(y), X \ f−1(U)

)
> 0. Every compact mapping of a metric space is a π-mapping.
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Example 2.4. There is a quotient and π-mapping f : (X, d) → Y with
d a metric on X such that f is not sequence-covering. Namely, let Y = {0}∪
{1/n : n ∈ N} endowed with the usual subspace topology of the real line R.
A collection D of subsets of N is said to be almost disjoint if A ∩B is finite
whenever A,B ∈ D, A 6= B. Using Zorn’s Lemma, there exists a collection
A of infinite subsets of N such that A is an almost disjoint collection and
maximal with respect to these properties. Then A must be uncountable;
denote it by {Aα : α ∈ Γ}. For each α ∈ Γ, put Bα = {α} ∪Aα, and define
a symmetric distance dα on Bα for each x, y ∈ Bα as follows:

dα(x, y) =


0, if x = y;

1/y, if x 6= y and x = α;

|1/x− 1/y|, if x 6= y, x 6= α and y 6= α.

Then (Bα, dα) is a metric space. Let X =
⊕

α∈Γ Bα, and define a distance d
on X for each x, y ∈ X as follows:

d(x, y) =

{
dα(x, y), if x, y ∈ Bα for some α ∈ Γ;

1, otherwise.

Then (X, d) is a metric space. Define a function f : X → Y by

f(x) =

{
0, if x ∈ Γ;

1/x, if x 6∈ Γ.

1. f is continuous. For each y ∈ Y \ {0}, f−1(y) = ⊕{1/y : 1/y ∈ Aα}
is an open and closed subspace of X. If U is a neighborhood of 0 in Y , then
f−1(U) ∩Bα is open in Bα for each α ∈ Γ, hence f−1(U) is open in X.

2. f is quotient. Let U be a subset of Y with f−1(U) open in X. For
each y ∈ Y , if y 6= 0, then y is isolated in Y , thus U is a neighborhood of
y in Y ; if y = 0 and U is not a neighborhood of y in Y , then there is an
infinite subset I of N such that 1/n 6∈ U for each n ∈ I. If I ∈ A, there is
α ∈ Γ such that Bα = {α}∪ I. Since f−1(U) is a neighborhood of α in X, the
convergent sequence Bα is eventually in f−1(U), thus the sequence {1/n}n∈I

is eventually in U , a contradiction. Hence I 6∈ A, from which there is a
α ∈ Γ such that I ∩Aα is infinite by the maximality of A. Then a sequence
in {1/x : x ∈ I ∩Aα} is eventually in f−1(U), a contradiction. So U is a
neighborhood of 0 in Y . Therefore, f is a quotient mapping.

3. f is a π-mapping. If not, there are a z ∈ Y and a neighborhood U of
z in Y such that d

(
f−1(z),X \ f−1(U)

)
= 0. Then there are sequences {zn}
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and {xn} in X such that each zn ∈ f−1(z), xn ∈ X \ f−1(U) and d(zn, xn)
< 1/n. Thus each f(zn) = z and f(xn) 6∈ U . By the definition of d, there is
α ∈ Γ such that xn, zn ∈ Bα, d(zn, xn) < 1/n, so

∣∣f(zn)− f(xn)
∣∣ < 1/n. This

implies that the sequence
{

f(xn)
}

converges to z in Y , a contradiction.
4. f is not a sequence-covering mapping. If not, there is a compact

subset K of X such that f(K) = Y . By the compactness of K, there is a
finite subset Γ′ of Γ such that K ⊂

⋃
α∈Γ′ Bα. Take a β ∈ Γ \ Γ′, then Aβ is

an infinite subset of N and Aβ ∩ (
⋃

α∈Γ′ Aα) is finite, so there is n0 ∈ Aβ

\ (
⋃

α∈Γ′ Aα) ⊂ Aβ \K. Then there is no x0 ∈ K such that f(x0) = 1/n0, a
contradiction. Hence f is not sequence-covering. �

Question 2.5 [9]. Is every quotient π-image of a metric space also a
sequence-covering quotient π-image of a metric space?

Remark 2.6. F. Siwiec [10] defined a “sequence-covering” mapping
as follows. A map f : X → Y is called sequence-covering if in case S is
a convergent sequence in Y then there is a convergent sequence K of X
such that f(K) = S. It must be noted that not every quotient and com-
pact mapping is sequence-covering in the sense of Siwiec. For example, let
X =

(
{0}∪{1/2n : n ∈N}

)
⊕

(
{0}∪{1/2n−1 : n ∈N}

)
, Y = {0}∪{1/n :

n ∈ N}. X, Y are endowed with the subspace topology of R, and let
f : X → Y be the obvious mapping. Then f is a quotient and compact
mapping, and f is not sequence-covering in the sense of Siwiec.
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