A NOTE ON *g***-DEVELOPABLE SPACES**

ZHAOWEN LI, SHOU LIN

and

PENGFEI YAN

(Received June 23, 2004)

Submitted by K. K. Azad

Abstract

In this paper, we give some characterizations of *g*-developable spaces, which prove that a space is *g*-developable if and only if it has a weakdevelopment consisting of *cs*-covers (*sn*-covers), or it is a strong compactcovering, quotient π images of a metric space.

1. Introduction and Definitions

In 1976, Lee [7] introduced the concept of *g*-developable spaces as a generalization of developable spaces, and obtained the following:

(1) A Hausdorff space is developable if and only if it is Fréchet and *g*-developable.

(2) A Hausdorff space is *g*-developable if and only if it is Cauchy.

(3) A Hausdorff *g*-developable space is a quotient π-image of a metric space.

2004 Pushpa Publishing House

²⁰⁰⁰ Mathematics Subject Classification: 54E40, 54E99, 54C10, 54D55.

Key words and phrases: *g*-developable spaces, Cauchy spaces, *cs*-covers, *sn*-covers, weakdevelopments, point-star networks, strong compact-covering maps, π-maps.

This work is supported by NNSF of China (No. 10271026), NSF of Hunan province in China (No. 04JJ6028), NSF of the Provincial Office of Education of Hunan.

182 ZHAOWEN LI, SHOU LIN and PENGFEI YAN

In 1991, Tanaka showed that a Hausdorff space is weak Cauchy if and only if it is a quotient π -image of a metric space, and gave an example explaining weak Cauchy is not necessarily Cauchy.

In this paper, we further discuss a *g*-developable space, give its "development" characterizations by using of weak-developments, *cs*-covers and *sn*-covers, and prove that a space is *g*-developable if and only if it is a strong compact-covering, quotient π -image of a metric space, which generalize the result of Lee and Tanaka.

In this paper, all spaces are Hausdorff, all maps are continuous and surjective. *N* denotes the set of all natural numbers. $\tau(X)$ denotes the topology on *X*. For a collection P of subsets of a space *X* and a map *f* : *X* \rightarrow *Y*, denote { $f(P)$: $P \in \mathcal{P}$ } by $f(\mathcal{P})$. For the usual product space $\prod_{i \in N} X_i$, π_i denotes the projection of $\prod_{i \in N}$ X_i onto X_i . For a sequence $\{x_n\}$ in *X*, denote $\langle x_n \rangle = \{x_n : n \in N\}.$

Definition 1.1. Let $f: X \rightarrow Y$ be a map. Then

(1) *f* is called a *compact*-*covering* [12] (respectively, *pseudo*-*sequencecovering* [5]) *map*, if each compact subset (respectively convergent sequence including its limit point) of *Y* is the image of some compact subset of *X*.

(2) *f* is a *sequence-covering map* [15], if whenever $\{y_n\}$ is a convergent sequence in *Y*, then there exists a convergent sequence $\{x_n\}$ in *X* such that each $x_n \in f^{-1}(y_n)$.

f is called *strong compact*-*covering*, if it is both a compact-covering and a sequence-covering.

(3) *f* is called a π -*map* [14], if (X, d) is a metric space, and for each *y* ∈ *Y* and its open neighborhood *V* in *Y*, $d(f^{-1}(y), M \setminus f^{-1}(V)) > 0$.

Definition 1.2 [3]. Let *X* be a space, and $P \subset X$. Then

(1) a sequence $\{x_n\}$ in *X* is called *eventually* in *P*, if $\{x_n\}$ converges to *x*, and there exists $m \in N$ such that $\{x\} \cup \{x_n : n \ge m\} \subset P$.

(2) *P* is called a *sequential neighborhood* of *x* in *X*, if whenever a sequence $\{x_n\}$ in *X* converges to *x*, then $\{x_n\}$ is eventually in *P*.

(3) *X* is called a *sequential space*, if any $A \subset X$ which is a sequential neighborhood of each of its points is open in *X*.

Definition 1.3 [10]. Let P be a collection of subsets of a space *X*. Then

(1) P is called a *cs-cover* for *X*, if P is a cover for *X*, and every convergent sequence in X is eventually in some element of P .

(2) P is called an *sn-cover* for *X*, if P is a cover for *X*, every element of P is a sequential neighborhood of some point in *X*, and for each $x \in X$ there exists a sequential neighborhood *P* of *x* in *X* such that $P \in \mathcal{P}$.

(3) P is called a *cfp* (i.e., *compact finite partition*) *cover* of a compact subset *K* in *X*, if there is a finite collection ${K_\alpha : \alpha \in J}$ of closed subsets of *K* and $\{P_{\alpha} : \alpha \in J\} \subset \mathcal{P}$ such that $K = \bigcup \{K_{\alpha} : \alpha \in J\}$ and each K_{α} $\subset P_{\alpha}$.

 P is called a *cfp-cover* for *X*, if P is a cover for *X*, and for any compact subset *K* of *X*, there exists a finite subcollection $\mathcal{P}^* \subset \mathcal{P}$ such that \mathcal{P}^* is a *cfp* cover of *K* in *X*.

Definition 1.4. Let $\{\mathcal{P}_n\}$ be a sequence of covers of a space *X*.

(1) $\{\mathcal{P}_n\}$ is called a *point-star network* for *X*, if for each $x \in X$, $\langle st(x, \mathcal{P}_n) \rangle$ is a network of *x* in *X*.

(2) $\{\mathcal{P}_n\}$ is called a *weak-development* for *X*, if for each $x \in X$, $\langle st(x, \mathcal{P}_n) \rangle$ is a weak neighborhood base for *X*.

Definition 1.5 [1]. Let (X, d) be a symmetrizable space. Then

(1) a sequence $\{x_n\}$ in *X* is called *d*-*Cauchy*, if for each $\varepsilon > 0$, there exists $k \in N$ such that $d(x_m, x_n) < \varepsilon$ for all $n, m > k$.

(2) *X* is called *Cauchy*, if each convergent sequence in *X* is *d*-Cauchy.

For a space *X*, let *g* be a map defined on $N \times X$ to the power-set of X such that $x \in g(n, x)$ and $g(n+1, x) \subset g(n, x)$ for each $n \in N$ and $x \in X$, a subset *U* of *X* is open if for each $x \in U$, there exists $n \in N$ such that $g(n, x) \subset U$. We call such a map a *CWC-map* (i.e., *countable weakly*-*open covering map*).

Definition 1.6 [7]**.** A space *X* is called *g*-*developable*, if *X* has a *CWC*-map *g* with the following property: If $x, x_n \in g(n, g_n)$ for each $n \in N$, then sequence $\{x_n\}$ converges to *x*.

2. Results

Theorem 2.1. *The following are equivalent for a space X*:

(1) *X is a g*-*developable space*.

(2) *X is a Cauchy space*.

(3) *X has a weak*-*development consisting of cs*-*covers*.

(4) *X has a weak*-*development consisting of sn*-*covers*.

(5) *X is a strong compact*-*covering*, *quotient* π-*image of a metric space*.

(6) *X is a sequence*-*covering*, *quotient* π-*image of a metric space*.

Proof. (1) \Leftrightarrow (2) follows from Theorem 2.3 in [7].

 $(2) \Rightarrow (3)$ Suppose *X* is a Cauchy space. For each $n \in N$, put

$$
\mathcal{P}_n = \{A \subset X : \sup\{d(x, y) : x, y \in A\} < 1/n\}
$$

then $st(x, \mathcal{P}_n) = B(x, 1/n)$ for each $x \in X$, so $\{\mathcal{P}_n\}$ is a point-star network for *X*.

For each sequence $\{x_n\}$ converging to $x \in X$, since $\{x_n\}$ is *d*-Cauchy and *X* is symmetrizable, then there exists $m \in N$ such that $d(x, x_i)$ $1/(n+1)$ and $d(x_i, x_j) < 1/(n+1)$ for all *i*, $j \ge m$ by Lemma 9.3 in [4]. Put

$$
P = \{x\} \cup \{x_i : i \geq m\}
$$

then $P \in \mathcal{P}_n$. Hence each \mathcal{P}_n is a *cs*-cover for *X*.

Obviously, *X* is a sequential space. For each $x \in X$ and $n \in N$, since P_n is a *cs*-cover for *X*, then $st(x, P_n)$ is a sequential neighborhood of *x* in *X*. So $\langle st(x, P_k) \rangle$ is a weak neighborhood base of *x* in *X*. Thus, $\{P_n\}$ is a weak-development for *X*.

(3) \Rightarrow (4) Suppose $\{\mathcal{P}_n\}$ is a *cs*-cover weak-development for *X*. We can assume that \mathcal{P}_{n+1} refines \mathcal{P}_n for each $n \in \mathbb{N}$. For each $x, y \in \mathbb{X}$, denotes

 $t(x, y) = \min\{n : x \notin st(y, \mathcal{P}_n)\}(x \neq y).$

We define

$$
d(x, y) = \begin{cases} 0, & x = y, \\ 2^{-t(x, y)}, & x \neq y, \end{cases}
$$

then $d: X \times X \to [0, +\infty)$ is a symmetric on *X*.

Claim. For each $x, y \in X$, $x \in st(y, \mathcal{P}_n)$ if and only if $t(x, y) > n$.

In fact, the if part is obvious. The only if part: Suppose $x \in st(y, \mathcal{P}_n)$ but $t(x, y) \leq n$, since \mathcal{P}_n refine $\mathcal{P}_{t(x, y)}$, $st(y, \mathcal{P}_n) \subset st(y, \mathcal{P}_{t(x, y)})$. Note that $x \notin st(y, \mathcal{P}_{t(x, y)})$, so $x \notin st(y, \mathcal{P}_n)$, a contradiction.

For each $x \in X$ and $n \in N$, $st(x, \mathcal{P}_n) = B(x, 1/2^n)$ by the Claim. Because $\{\mathcal{P}_n\}$ is a point-star network for *X*, then (X, d) is symmetrizable. And *d* has the following property: for each $x \in X$ and $\varepsilon > 0$, there exists $\delta = \delta(x, \varepsilon) > 0$ such that $d(x, y) < \delta$ and $d(x, z) < \delta$ imply $d(y, z) < \varepsilon$. Otherwise, there exist $\varepsilon_0 > 0$ and two sequences $\{y_n\}$ and $\{z_n\}$ in X such that $d(y_n, z_n) \ge \varepsilon_0$ whenever $d(x, y_n) < 1/2^n$ and $d(x, z_n) < 1/2^n$. From P_n is a point-star network for *X*, $\{y_n\}$ and $\{z_n\}$ all converge to *x*. We choose $k \in N$ such that $1/2^k < \varepsilon_0$. Since P_k is a *cs*-cover for *X*, ${x }_{m}, {z}_{m} \subset P$ for some $m \in N$ and $P \in \mathcal{P}_{k}$. Thus ${y}_{m} \in st({z}_{m}, {\mathcal{P}}_{k})$. By the Claim, $t(y_m, z_m) > k$. Thus, $d(y_m, z_m) = 1/2^{t(y_m, z_m)} < 1/2^k < \varepsilon_0$, a contradiction.

For each $x \in X$ and $n \in N$, we can pick $\delta = \delta(x, n)$ such that $d(y, z)$ $x < 1/n$ whenever $d(x, y) < \delta$ and $d(x, z) < \delta$. Let $g(n, x) = B(x, \delta(x, n))$.

Since \mathcal{P}_n is a *cs*-cover for *X*, $st(x, \mathcal{P}_n)$ is a sequential neighborhood of *x* in *X*, so $g(n, x)$ is also. Put

$$
\mathcal{F}_n = \{g(n, x) : x \in X\},\
$$

then every \mathcal{F}_n is a *sn*-cover for *X*.

If $\{\mathcal{F}_n\}$ is not a point-star network for *X*, then there exist $x \in G \in \tau(X)$ and two sequences $\{x_n\}$ and $\{y_n\}$ in *X* such that $x \in g(n, y_n)$ and $x_n \in g(n, y_n) \setminus G$. So $\{x_n\}$ does not converge to *x*, and $d(y_n, x) < \delta(y_n, n)$, $d(y_n, x_n) < \delta(y_n, n)$. By the condition, $d(x, x_n) < 1/n$. This implies that $\{x_n\}$ converges *x*, a contradiction. Hence is a point-start network for *X*.

Obviously, *X* is a sequential space. Since $st(x, \mathcal{F}_n)$ is a sequential neighborhood of *x* in *X* for each $x \in X$ and $n \in N$, $\{\mathcal{F}_n\}$ is a weakdevelopment for *X*.

(3) \Rightarrow (2) Suppose $\{\mathcal{P}_i\}$ is a weak-development consisting of *cs*-covers for *X*. We can assume that P_{n+1} refines P_n for each $n \in N$. A similar proof of (3) \Rightarrow (4), we can define a symmetric *d* on *X* such that $st(x, P_n)$ $B(x, 1/2^n)$ for each $x \in X$ and $n \in N$. So (X, d) is symmetrizable. For each sequence $\{x_n\}$ in *X* converging to $x \in X$ and $\varepsilon > 0$, there exists $k \in N$ such that $1/2^k < \varepsilon$. Since P_k is a *cs*-cover for *X*, there exist $P \in \mathcal{P}_k$ and $l \in N$ such that $\{x\} \cup \{x_n : n \geq l\} \subset P$. If $n, m \geq l$, then $x_n, x_m \in P$, so $x_n \in st(x_m, P_k)$. Thus $t(x_n, x_m) > k$ by the Claim in $(3) \Rightarrow (4)$. Hence $d(x_n, x_m) = 1/2^{t(x_n, x_m)} < 1/2^k < \varepsilon$ whenever $n, m \geq l$. Therefore $\{x_n\}$ is *d*-Cauchy. This implies that *X* is Cauchy.

(4) \Rightarrow (5) Suppose $\{\mathcal{P}_n\}$ is a weak-development consisting of *sn*covers for *X*. For each $i \in N$, let $\mathcal{P}_i = \{P_\alpha : \alpha \in \Lambda_i\}$, endow Λ_i with the discrete topology, then Λ_i is a metric space. Put

$$
M = \left\{ \alpha = (\alpha_i) \in \prod_{i \in N} \Lambda_i : \langle P_{\alpha_i} \rangle \text{ forms a network at some point } x_{\alpha} \text{ in } X \right\}
$$

and endow *M* with the subspace topology induced from the usual product topology of the collection $\{\Lambda_i : i \in \mathbb{N}\}\$ of metric spaces, then *M* is a metric space. Since *X* is Hausdorff, x_{α} is unique in *X*. For each $\alpha \in M$. We define $f: M \to X$ by $f(\alpha) = x_{\alpha}$. For each $x \in X$ and $i \in N$, there exists $\alpha_i \in \Lambda_i$ $\{x_i : i \in N\}$ *i* $\{P_{\alpha_i} : i \in N\}$ is a point-star network for *X*, $\{P_{\alpha_i} : i \in N\}$ is a network of x in X. Put $\alpha = (\alpha_i)$, then $\alpha \in M$ and $f(\alpha) = x$. Thus f is surjective. Suppose $\alpha = (\alpha_i) \in M$ and $f(\alpha) = x \in U \in \tau(X)$, then there exists $n \in N$ such that $P_{\alpha_n} \subset U$. Put

 $V = \{\beta \in M : \text{the } n\text{-th coordinate of } \beta \text{ is } \alpha_n\}$

then $\alpha \in V \in \tau(X)$, and $f(V) \subset P_{\alpha_n} \subset U$. Hence *f* is continuous.

(1) *f* is a π -map. For each α , $\beta \in M$, we define

$$
d(\alpha, \beta) = \begin{cases} 0, & \alpha = \beta, \\ \max\{1/k : \pi_k(\alpha) \neq \pi_k(\beta)\}, & \alpha \neq \beta, \end{cases}
$$

then *d* is a distance on *M*. Because the topology of *M* is the subspace topology induced from the usual product topology of the collection $\{\Lambda_i : i \in N\}$ of discrete spaces, thus *d* is metric on *M*. For each $x \in U$ $\in \tau(X)$, note that $\{\mathcal{P}_n\}$ is a point-star network for *X*, there exists $n \in N$ such that $st(x, \mathcal{P}_n) \subset U$. For $\alpha \in f^{-1}(x)$, $\beta \in M$, if $d(\alpha, \beta) < 1/n$, then $\pi_i(\alpha) = \pi_i(\beta)$ for all $i \leq n$. So $x \in P_{\pi_n(\alpha)} = P_{\pi_n(\beta)}$. Thus

$$
f(\beta) \in \bigcap_{i \in N} P_{\pi_i(\beta)} \subset P_{\pi_n(\beta)} \subset U.
$$

Hence

$$
d(f^{-1}(x), M \setminus f^{-1}(U)) \ge 1/n.
$$

Therefore f is a π -map.

(2) *f* is a sequence-covering map.

Suppose $\{x_n\}$ converges to *x* in *X*. For each $i \in N$, since every P_i is a *sn*-cover for *X*, then there exists $\alpha_i \in \Lambda_i$ such that P_{α_i} is a sequential neighborhood of *x* in *X*, so $\{x_n\}$ is eventually in P_{α_i} . From $\{\mathcal{P}_i\}$ is a point

-star network for *X*, $\langle P_{\alpha_i} \rangle$ is a network of *x* in *X*. Put $\beta_x = (\alpha_i) \in \prod_{i \in N} \Lambda$ $i \in N$ $x = (\alpha_i) \in \prod \Lambda_i,$

then $\beta_x \in f^{-1}(x)$. For each $n \in N$, if $x_n \in P_{\alpha_i}$, let $\alpha_{in} = \alpha_i$; if $x_n \notin P_{\alpha_i}$, pick $\alpha_{in} \in \Lambda_i$ such that $x_n \in P_{\alpha_{in}}$. Thus there exists $n_i \in N$ such that $\alpha_{in} = \alpha_i$ for all $n > n_i$. So $\{\alpha_{in}\}\)$ converges to α_i . For each $n \in N$, put

$$
\beta_n = (\alpha_{in}) \in \prod_{i \in N} \Lambda_i,
$$

then $\beta_n \in f^{-1}(x_n)$ and $\{\beta_n\}$ converges to β_x . Thus *f* is sequence-covering.

(3) *f* is a quotient map.

Since *f* is sequence-covering, by Proposition 2.1.16 in [8], *f* is quotient.

(4) *f* is a compact-covering map.

First, we prove that each P_n is a *cfp*-cover for *X*. As the proof of (3) \Rightarrow (4), we can define $\rho: X \times X \rightarrow [0, +\infty)$, then ρ is a symmetric on *X* and (X, ρ) is symmetrizable. If *K* is compact in *X*, then subspace *K* is symmetrizable. Since compact symmetrizable space is metrizable (see [13]), subspace *K* is metrizable. For each $x \in K$, there exists $P_x \in \mathcal{P}_n$ such that P_x is a sequential neighborhood of x in X, then $x \in$ *Int*_K $(P_x \cap K)$. Thus $\{Int_K(P_x \cap K) : x \in K\}$ is a open cover for subspace *K*, so there is a finite collection ${K_i : i \leq l}$ of closed subsets of K and ${int_K (P_{x_i} \cap K) : i \leq l} \subset P_n$ such that $K = \bigcup \{K_i : i \leq l\}$ and each $K_i \subset I$ *Int*_K $(P_{x_i} \cap K)$. Hence $\{P_{x_i} : i \leq l\}$ is a *cfp*-cover of *K* in *X*. This implies that each P_n is a *cfp*-cover for *X*.

Next, we prove that *f* is compact-covering. Suppose *K* is compact in *X*. From each P_n is a *cfp*-cover for *X*, there exists its finite subcollection \mathcal{P}_n^K such that \mathcal{P}_n^K is a *cfp*-cover of *K* in *X*. Thus there is a finite collection ${K_\alpha : \alpha \in J_n}$ of closed subsets of *K* and ${P_\alpha : \alpha \in J_n} \subset \mathcal{P}_n^K$ such that $K = \bigcup \{K_\alpha : \alpha \in J_n\}$ and each $K_\alpha \subset P_\alpha$. Obviously, each K_α is compact in *X*. Put

$$
L = \left\{ (\alpha_i) : \alpha_i \in J_i, \bigcap_{i \in N} K_{\alpha_i} \neq \emptyset \right\},\
$$

then

(i) *L* is compact in *M*.

In fact,
$$
\forall (\alpha_i) \notin L
$$
, $\bigcap_{i \in N} K_{\alpha_i} = \emptyset$. From $\bigcap_{i \in N} K_{\alpha_i} = \emptyset$, there exists $n_0 \in N$
such that $\bigcap_{i=1}^{n_0} K_{\alpha_i} = \emptyset$.

Put

$$
W = \{(\beta_i) : \beta_i \in J_i, \, \beta_i = \alpha_i, \, 1 \le i \le n_0\},\
$$

then *W* is a open neighborhood of (α_i) in $\prod_{i \in N} J_i$, J_i , and $W \cap L = \emptyset$. Thus L is closed in $\prod_{i \in N} J_i$. By $\prod_{i \in N} J_i$ is compact in $\prod_{i \in N} \Lambda$ *i N ⁱ*, *L* is compact in *M*.

(ii) $L \subset M$, $f(L) = K$.

In fact, $\forall (\alpha_i) \in L$, $\bigcap_{i \in N} K_{\alpha_i} \neq \emptyset$. Pick $x \in \bigcap_{i \in N} K_{\alpha_i}$, then $\langle P_{\alpha_i} \rangle$ is a network of *x* in *X*, so $(\alpha_i) \in M$. This implies $L \subset M$.

 $\forall x \in K$, for each $i \in N$, pick $\alpha_i \in J_i$ such that $x \in K_{\alpha_i}$. Thus $f((\alpha_i)) = x$, so $K \subset f(L)$. Obviously, $f(L) \subset K$. Hence $f(L) = K$.

In words, *f* is compact-covering.

 $(5) \Rightarrow (6)$ is obvious.

(6) \Rightarrow (3) Suppose *X* is a image of a metric space (M, d) under a sequence-covering, quotient π -map *f*. For each $n \in N$, put $\mathcal{B}_n = \{B(z, 1/n)\}$: $z \in M$ } and $\mathcal{P}_n = f(\mathcal{B}_n)$, here $B(z, 1/n) = \{y \in M : d(z, y) < 1/n\}$. Then ${P_n}$ is a point-star network for *X*. In fact, for each $x \in X$ and its open neighborhood *U*, since *f* is a π -map, there exists $n \in N$ such that $d(f^{-1}(x), M \setminus f^{-1}(U)) > 1/n$. We can pick $m \in N$ such that $m \ge 2n$. If $z \in M$ with $x \in f(B(z, 1/m))$, then

$$
f^{-1}(x)\bigcap B(z,1/m)\neq\emptyset.
$$

If $B(z, 1/m) \subset f^{-1}(U)$, then

$$
d(f^{-1}(x), M \setminus f^{-1}(U)) \le 2/m \le 1/n,
$$

a contradiction. Thus $B(z, 1/m) \subset f^{-1}(U)$, so $f(B(z, 1/m)) \subset U$. Hence *st*(*x*, P_m) ⊂ *U*. This implies that ${P_n}$ is a point-star network for *X*.

It is clear that *X* is a sequential space. We need only prove that each P_n is a *cs*-cover for *X*. For each $n \in N$, since B_n is a *cs*-cover for *M* and sequence-covering maps preserve *cs*-covers, P_n is a *cs*-cover for *X*.

Example 2.2. Let *Z* be the topological sum of the unite interval [0, 1], and the collection $\{S(x) : x \in [0, 1]\}$ of 2^{ω} convergent sequence *S*(x). Let *X* be the space obtained from *Z* by identifying the limit point of *S*(*x*) with $x \in [0, 1]$, for each $x \in [0, 1]$. Then, from Example 2.9.27 in [8] or see Example 9.8 in [5], we have the following facts:

 (1) *X* is a compact-covering, quotient compact image of a locally compact metric space.

(2) *X* has no point-countable *cs*-networks.

From the fact above, Theorem 1 in [9] and Theorem 2.1, the following holds:

A compact-covering, quotient π -image of a metric space is not a *g-*developable space.

References

- [1] P. S. Alexandroff and V. Niemytzki, The condition of metrizability of topological spaces and the axiom of symmetry, Mat. Sb. 3 (1938), 663-672.
- [2] A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21 (1996), 115-162.
- [3] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115.
- [4] G. Gruenhage, Generalized metric spaces, Handbook of Set-theoretic Topology,

K. Kunen and J. E. Vaughan, eds., North-Holland, Amsterdam, 1984, pp. 423-501.

- [5] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303-332.
- [6] Y. Ikeda, C. Liu and Y. Tanaka, Quotient compact images of metric spaces, and related matters, Topology Appl. 122 (2002), 237-252.
- [7] K. B. Lee, On certain *g*-first countable spaces, Pacific J. Math. 65 (1976), 113-118.
- [8] S. Lin, Generalized Metric Spaces and Mappings, Chinese Scientific Publ., Beijing, 1995.
- [9] S. Lin, A note on Michael-Nagami's problem, Chinese Ann. Math. 17 (1996), 9-12.
- [10] S. Lin, Point-countable Covers and Sequence-covering Mappings, Chinese Scientific Publ., Beijing, 2002.
- [11] S. Lin, Y. Zhou and P. Yan, On sequential-cover π-mappings, Acta Math. Sinica 45 (2002), 1157-1164.
- [12] E. Michael, \aleph_0 -spaces, J. Math. Mech. 15 (1966), 983-1002.
- [13] S. I. Nedev, On metrizable spaces, Trans. Moscow Math. Soc. 24 (1971), 213-247.
- [14] V. I. Ponomarev, Axioms of countability of continuous mappings, Bull. Pol. Acad. Math. 8 (1960), 127-133.
- [15] F. Siwiec, Sequence-covering and countably bi-quotient mappings, Gen. Top. Appl. 1 (1971), 143-154.
- [16] F. Siwiec, On defining a space by a weak-base, Pacific J. Math. 52 (1974), 233-245.
- [17] Y. Tanaka, Symmetric spaces, *g*-developable space and *g*-metrizable spaces, Math. Japonica 36 (1991), 71-84.
- [18] Y. Tanaka and Z. Li, Certain covering-maps and *k*-networks, and related matters, Topology Proc. 27 (2003), 317-334.

Department of Mathematics

Changsha University of Science and Technology Changsha, Hunan 410077, P. R. China e-mail: lizhaowen8846@163.com

Department of Mathematics Ningde Teachers' College Ningde, Fujian 352100, P. R. China

Department of Mathematics Anhui University Hefei, Anhui 230039, P. R. China