
Far East J. Math. Sci. (FJMS) 15(2) (2004), 181-191

:tionClassifica jectSub sMathematic 2000 54E40, 54E99, 54C10, 54D55.

Key words and phrases: g-developable spaces, Cauchy spaces, cs-covers, sn-covers, weak-

developments, point-star networks, strong compact-covering maps, π-maps.

This work is supported by NNSF of China (No. 10271026), NSF of Hunan province in China
(No. 04JJ6028), NSF of the Provincial Office of Education of Hunan.

 2004 Pushpa Publishing House

A NOTE ON g-DEVELOPABLE SPACES

ZHAOWEN LI, SHOU LIN

and

PENGFEI YAN

( Received June 23, 2004 )

Submitted by K. K. Azad

Abstract

In this paper, we give some characterizations of g-developable spaces,

which prove that a space is g-developable if and only if it has a weak-

development consisting of cs-covers (sn-covers), or it is a strong compact-

covering, quotient π-images of a metric space.

1. Introduction and Definitions

In 1976, Lee [7] introduced the concept of g-developable spaces as a
generalization of developable spaces, and obtained the following:

(1) A Hausdorff space is developable if and only if it is Fréchet and

g-developable.

(2) A Hausdorff space is g-developable if and only if it is Cauchy.

(3) A Hausdorff g-developable space is a quotient π-image of a metric

space.
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In 1991, Tanaka showed that a Hausdorff space is weak Cauchy if

and only if it is a quotient π-image of a metric space, and gave an
example explaining weak Cauchy is not necessarily Cauchy.

In this paper, we further discuss a g-developable space, give its
“development” characterizations by using of weak-developments,

cs-covers and sn-covers, and prove that a space is g-developable if and

only if it is a strong compact-covering, quotient π-image of a metric space,

which generalize the result of Lee and Tanaka.

In this paper, all spaces are Hausdorff, all maps are continuous and

surjective. N denotes the set of all natural numbers. ( )Xτ  denotes the

topology on X. For a collection P  of subsets of a space X and a map

,: YXf →  denote ( ){ }P∈PPf :  by ( ).Pf  For the usual product space

∏
∈Ni

iX ,  iπ  denotes the projection of ∏
∈Ni

iX  onto .iX  For a sequence { }nx

in X, denote { }.: Nnxx nn ∈=

Definition 1.1. Let YXf →:  be a map. Then

(1) f is called a compact-covering [12] (respectively, pseudo-sequence-

covering [5]) map, if each compact subset (respectively convergent

sequence including its limit point) of Y is the image of some compact

subset of X.

(2) f is a sequence-covering map [15], if whenever { }ny  is a convergent

sequence in Y, then there exists a convergent sequence { }nx  in X such

that each ( ).1
nn yfx −∈

f is called strong compact-covering, if it is both a compact-covering
and a sequence-covering.

(3) f is called a π-map [14], if ( )dX ,  is a metric space, and for each

Yy ∈  and its open neighborhood V in ( ( ) ( )) .0\,, 11 >−− VfMyfdY

Definition 1.2 [3]. Let X be a space, and .XP ⊂  Then

(1) a sequence { }nx  in X is called eventually in P, if { }nx  converges to

x, and there exists Nm ∈  such that { } { } .: Pmnxx n ⊂≥∪
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(2) P is called a sequential neighborhood of x in X, if whenever a

sequence { }nx  in X converges to x, then { }nx  is eventually in P.

(3) X is called a sequential space, if any XA ⊂  which is a sequential

neighborhood of each of its points is open in X.

Definition 1.3 [10]. Let P  be a collection of subsets of a space X.

Then

(1) P  is called a cs-cover for X, if P  is a cover for X, and every

convergent sequence in X is eventually in some element of .P

(2) P  is called an sn-cover for X, if P  is a cover for X, every element

of P  is a sequential neighborhood of some point in X, and for each Xx ∈

there exists a sequential neighborhood P of x in X such that .P∈P

(3) P  is called a cfp (i.e., compact finite partition) cover of a compact

subset K in X, if there is a finite collection { }JK ∈αα :  of closed subsets

of K and { } P⊂∈αα JP :  such that { }JKK ∈α= α :∪  and each αK

.α⊂ P

P  is called a cfp-cover for X, if P  is a cover for X, and for any

compact subset K of X, there exists a finite subcollection PP ⊂∗  such

that ∗P  is a cfp cover of K in X.

Definition 1.4. Let { }nP  be a sequence of covers of a space X.

(1) { }nP  is called a point-star network for X, if for each ,Xx ∈

( )nxst P,  is a network of x in X.

(2) { }nP  is called a weak-development for X, if for each ,Xx ∈

( )nxst P,  is a weak neighborhood base for X.

Definition 1.5 [1]. Let ( )dX ,  be a symmetrizable space. Then

(1) a sequence { }nx  in X is called d-Cauchy, if for each ,0>ε  there

exists Nk ∈  such that ( ) ε<nm xxd ,  for all ., kmn >

(2) X is called Cauchy, if each convergent sequence in X is d-Cauchy.
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For a space X, let g be a map defined on XN ×  to the power-set of X

such that ( )xngx ,∈  and ( ) ( )xngxng ,,1 ⊂+  for each Nn ∈  and

,Xx ∈  a subset U of X is open if for each ,Ux ∈  there exists Nn ∈

such that ( ) ., Uxng ⊂  We call such a map a CWC-map (i.e., countable

weakly-open covering map).

Definition 1.6 [7]. A space X is called g-developable, if X has a

CWC-map g with the following property: If ( )nn gngxx ,, ∈  for each

,Nn ∈  then sequence { }nx  converges to x.

2. Results

Theorem 2.1. The following are equivalent for a space X:

(1) X is a g-developable space.

(2) X is a Cauchy space.

(3) X has a weak-development consisting of cs-covers.

(4) X has a weak-development consisting of sn-covers.

(5) X is a strong compact-covering, quotient π-image of a metric space.

(6) X is a sequence-covering, quotient π-image of a metric space.

Proof. (1) ⇔  (2) follows from Theorem 2.3 in [7].

(2) ⇒  (3) Suppose X is a Cauchy space. For each ,Nn ∈  put

( ){ }{ }nAyxyxdXAn 1,:,sup: <∈⊂=P

then ( ) ( )nxBxst n 1,, =P  for each ,Xx ∈  so { }nP  is a point-star network

for X.

For each sequence { }nx  converging to ,Xx ∈  since { }nx  is d-Cauchy

and X is symmetrizable, then there exists Nm ∈  such that ( ) <ixxd ,

( )11 +n  and ( ) ( )11, +< nxxd ji  for all mji ≥,  by Lemma 9.3 in [4].

Put

{ } { }mixxP i ≥= :∪

then .nP P∈  Hence each nP  is a cs-cover for X.
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Obviously, X is a sequential space. For each Xx ∈  and ,Nn ∈  since

nP  is a cs-cover for X, then ( )nxst P,  is a sequential neighborhood of x in

X. So ( )kxst P,  is a weak neighborhood base of x in X. Thus, { }nP  is a

weak-development for X.

(3)⇒  (4) Suppose { }nP  is a cs-cover weak-development for X. We can

assume that 1+nP  refines nP  for each .Nn ∈  For each ,, Xyx ∈  denotes

( ) ( ){ } ( ).,:min, yxystxnyxt n ≠∉= P
We define

( ) ( )



≠
=

= − ,,2
,,0

, , yx
yx

yxd yxt

then [ )∞+→× ,0: XXd  is a symmetric on X.

Claim. For each ( )nystxXyx P,,, ∈∈  if and only if ( ) ., nyxt >

In fact, the if part is obvious. The only if part: Suppose ( )nystx P,∈

but ( ) ,, nyxt ≤  since nP  refine ( ),, yxtP  ( ) ( ( ) ).,, , yxtn ystyst PP ⊂  Note

that ( ( ) ),, , yxtystx P∉  so ( ),, nystx P∉  a contradiction.

For each Xx ∈  and ,Nn ∈  ( ) ( )n
n xBxst 21,, =P  by the Claim.

Because { }nP  is a point-star network for X, then ( )dX ,  is symmetrizable.

And d has the following property: for each Xx ∈  and ,0>ε  there exists

( ) 0, >εδ=δ x  such that ( ) δ<yxd ,  and ( ) δ<zxd ,  imply ( ) ., ε<zyd

Otherwise, there exist 00 >ε  and two sequences { }ny  and { }nz  in X

such that ( ) 0, ε≥nn zyd  whenever ( ) n
nyxd 21, <  and ( ) .21, n

nzxd <

From nP  is a point-star network for X, { }ny  and { }nz  all converge to x.

We choose Nk ∈  such that .21 0ε<k  Since kP  is a cs-cover for X,

{ } Pzy mm ⊂,  for some Nm ∈  and .kP P∈  Thus ( )., kmm zsty P∈  By

the Claim, ( ) ., kzyt mm >  Thus, ( ) ( ) ,2121, 0
, ε<<= kzyt

mm
mmzyd  a

contradiction.

For each Xx ∈  and ,Nn ∈  we can pick ( )nx,δ=δ  such that ( )zyd ,

n1<  whenever ( ) δ<yxd ,  and ( ) ., δ<zxd  Let ( ) ( )( ).,,, nxxBxng δ=
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Since nP  is a cs-cover for X, ( )nxst P,  is a sequential neighborhood of x

in X, so ( )xng ,  is also. Put

( ){ },:, Xxxngn ∈=F

then every nF  is a sn-cover for X.

If { }nF  is not a point-star network for X, then there exist

( )XGx τ∈∈  and two sequences { }nx  and { }ny  in X such that

( )nyngx ,∈  and ∈nx  ( ) .\, Gyng n  So { }nx  does not converge to x, and

( ) ( ),,, nyxyd nn δ<  ( ) ( ).,, nyxyd nnn δ<  By the condition,

( ) .1, nxxd n <  This implies that { }nx  converges x, a contradiction. Hence

is a point-start network for X.

Obviously, X is a sequential space. Since ( )nxst F,  is a sequential

neighborhood of x in X for each Xx ∈  and ,Nn ∈  { }nF  is a weak-

development for X.

(3) ⇒  (2) Suppose { }iP  is a weak-development consisting of cs-covers

for X. We can assume that 1+nP  refines nP  for each .Nn ∈  A similar

proof of (3) ⇒  (4), we can define a symmetric d on X such that ( )nxst P,

( )nxB 21,=  for each Xx ∈  and .Nn ∈  So ( )dX ,  is symmetrizable.

For each sequence { }nx  in X converging to Xx ∈  and ,0>ε  there exists

Nk ∈  such that .21 ε<k  Since kP  is a cs-cover for X, there exist

kP P∈  and Nl ∈  such that { } { } .: Plnxx n ⊂≥∪  If ,, lmn ≥  then

,, Pxx mn ∈  so ( )., kmn xstx P∈  Thus ( ) kxxt mn >,  by the Claim in

(3) ⇒  (4). Hence ( ) ( ) ε<<= kxxt
mn

mnxxd 2121, ,  whenever ., lmn ≥

Therefore { }nx  is d-Cauchy. This implies that X is Cauchy.

(4) ⇒  (5) Suppose { }nP  is a weak-development consisting of sn-

covers for X. For each ,Ni ∈  let { },: ii P Λ∈α= αP  endow iΛ  with the

discrete topology, then iΛ  is a metric space. Put

( )












Λ∈α=α= ∏
∈

αα
Ni

ii XxPM
i

inpoint some at network a forms:
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and endow M with the subspace topology induced from the usual product

topology of the collection { }Nii ∈Λ :  of metric spaces, then M is a metric

space. Since X is Hausdorff, αx  is unique in X. For each .M∈α  We define

XMf →:  by ( ) .α=α xf  For each Xx ∈  and ,Ni ∈  there exists ii Λ∈α

such that .
i

Px α∈  From { }iP  is a point-star network for X, { }NiP
i

∈α :

is a network of x in X. Put ( ),iα=α  then M∈α  and ( ) .xf =α  Thus f is

surjective. Suppose ( ) Mi ∈α=α  and ( ) ( ),XUxf τ∈∈=α  then there

exists Nn ∈  such that .UP
n
⊂α  Put

{ }nnMV αβ∈β= isof coordinate th- the:

then ( ),XV τ∈∈α  and ( ) .UPVf
n
⊂⊂ α  Hence f is continuous.

(1) f is a π-map. For each ,, M∈βα  we define

( ) ( ) ( ){ }



β≠αβπ≠απ
β=α

=βα
,,:1max
,,0

,
kkk

d

then d is a distance on M. Because the topology of M is the subspace
topology induced from the usual product topology of the collection

{ }Nii ∈Λ :  of discrete spaces, thus d is metric on M. For each Ux ∈

( ),Xτ∈  note that { }nP  is a point-star network for X, there exists Nn ∈

such that ( ) ., Uxst n ⊂P  For ( ),1 xf −∈α  ,M∈β  if ( ) ,1, nd <βα  then

( ) ( )βπ=απ ii  for all .ni ≤  So ( ) ( ).βπαπ =∈
nn

PPx  Thus

( ) ( ) ( )∩
Ni

UPPf
ni

∈
βπβπ ⊂⊂∈β .

Hence

( ( ) ( )) .1\, 11 nUfMxfd ≥−−

Therefore f is a π-map.

(2) f is a sequence-covering map.

Suppose { }nx  converges to x in X. For each ,Ni ∈  since every iP  is a

sn-cover for X, then there exists ii Λ∈α  such that 
i

Pα  is a sequential

neighborhood of x in X, so { }nx  is eventually in .
i

Pα  From { }iP  is a point
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-star network for X, 
i

Pα  is a network of x in X. Put ( ) ∏
∈

Λ∈α=β
Ni

iix ,

then ( ).1 xfx
−∈β  For each ,Nn ∈  if ,

i
Pxn α∈  let ;iin α=α  if ,

i
Pxn α∉

pick iin Λ∈α  such that .
in

Pxn α∈  Thus there exists Nni ∈  such that

iin α=α  for all .inn >  So { }inα  converges to .iα  For each ,Nn ∈  put

( ) ,∏
∈

Λ∈α=β
Ni

iinn

then ( )nn xf 1−∈β  and { }nβ  converges to .xβ  Thus f is sequence-covering.

(3) f is a quotient map.

Since f is sequence-covering, by Proposition 2.1.16 in [8], f is quotient.

(4) f is a compact-covering map.

First, we prove that each nP  is a cfp-cover for X. As the proof of

(3) ⇒  (4), we can define [ ),,0: ∞+→×ρ XX  then ρ is a symmetric on

X and ( )ρ,X  is symmetrizable. If K is compact in X, then subspace K is

symmetrizable. Since compact symmetrizable space is metrizable (see

[13]), subspace K is metrizable. For each ,Kx ∈  there exists nxP P∈

such that xP  is a sequential neighborhood of x in X, then ∈x

( ).KPInt xK ∩  Thus ( ){ }KxKPInt xK ∈:∩  is a open cover for subspace

K, so there is a finite collection { }liKi ≤:  of closed subsets of K and

{ ( ) } nxK liKPInt
i

P⊂≤:∩  such that { }liKK i ≤= :∪  and each ⊂iK

( ).KPInt
ixK ∩  Hence { }liP

ix ≤:  is a cfp-cover of K in X. This implies

that each nP  is a cfp-cover for X.

Next, we prove that f is compact-covering. Suppose K is compact in X.

From each nP  is a cfp-cover for X, there exists its finite subcollection

K
nP  such that K

nP  is a cfp-cover of K in X. Thus there is a finite

collection { }nJK ∈αα :  of closed subsets of K and { } K
nnJP P⊂∈αα :

such that { }nJKK ∈α= α :∪  and each .αα ⊂ PK  Obviously, each αK

is compact in X. Put
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( ) ,,:












∅≠∈αα=
∈

α∩
Ni

iii i
KJL

then

(i) L is compact in M.

In fact, ( ) ∩
Ni

i i
KL

∈
α ∅=∉α∀ .,  From ∩

Ni
i

K
∈

α ∅= ,  there exists Nn ∈0

such that .
0

1
∩
n

i
i

K
=

α ∅=

Put

( ){ },1,,: 0niJW iiiii ≤≤α=β∈ββ=

then W is a open neighborhood of ( )iα  in ,∏
∈Ni

iJ  and .∅=LW ∩  Thus L

is closed in .∏
∈Ni

iJ  By ∏
∈Ni

iJ  is compact in ∏
∈

Λ
Ni

i ,  L is compact in M.

(ii) ( ) ., KLfML =⊂

In fact, ( ) ,Li ∈α∀  .∩
Ni

i
K

∈
α ∅≠  Pick ∩

Ni
i

Kx
∈

α∈ ,  then 
i

Pα  is a

network of x in X, so ( ) .Mi ∈α  This implies .ML ⊂

,Kx ∈∀  for each ,Ni ∈  pick ii J∈α  such that .
i

Kx α∈  Thus

( )( ) ,xf i =α  so ( ).LfK ⊂  Obviously, ( ) .KLf ⊂  Hence ( ) .KLf =

In words, f is compact-covering.

(5) ⇒  (6) is obvious.

(6) ⇒  (3) Suppose X is a image of a metric space ( )dM ,  under a

sequence-covering, quotient π-map f. For each ,Nn ∈  put { ( )nzBn 1,=B

}Mz ∈:  and ( ),nn f BP =  here ( ) ( ){ }.1,:1, nyzdMynzB <∈=  Then

{ }nP  is a point-star network for X. In fact, for each Xx ∈  and its open

neighborhood U, since f is a π-map, there exists Nn ∈  such that

( ( ) ( )) .1\, 11 nUfMxfd >−−  We can pick Nm ∈  such that .2nm ≥  If
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Mz ∈  with ( )( ),1, mzBfx ∈  then

( ) ( ) .1,1 ∩ ∅≠− mzBxf

If ( ) ( ),1, 1 UfmzB −⊄  then

( ( ) ( )) ,12\, 11 nmUfMxfd ≤≤−−

a contradiction. Thus ( ) ( ),1, 1 UfmzB −⊂  so ( )( ) .1, UmzBf ⊂  Hence

( ) ., Uxst m ⊂P  This implies that { }nP  is a point-star network for X.

It is clear that X is a sequential space. We need only prove that each

nP  is a cs-cover for X. For each ,Nn ∈  since nB  is a cs-cover for M and

sequence-covering maps preserve cs-covers, nP  is a cs-cover for X.

Example 2.2. Let Z be the topological sum of the unite interval

[ ],1,0  and the collection ( ) [ ]{ }1,0: ∈xxS  of ω2  convergent sequence

( ).xS  Let X be the space obtained from Z by identifying the limit point of

( )xS  with [ ],1,0∈x  for each [ ].1,0∈x  Then, from Example 2.9.27 in [8]

or see Example 9.8 in [5], we have the following facts:

 (1) X is a compact-covering, quotient compact image of a locally
compact metric space.

(2) X has no point-countable cs-networks.

From the fact above, Theorem 1 in [9] and Theorem 2.1, the following
holds:

A compact-covering, quotient π-image of a metric space is not a

g-developable space.
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