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Abstract

In this paper, we give some characterizations of g-developable spaces,

which prove that a space is g-developable if and only if it has a weak-

development consisting of cs-covers (sn-covers), or it is a strong compact-

covering, quotient π-images of a metric space.

1. Introduction and Definitions

In 1976, Lee [7] introduced the concept of g-developable spaces as a
generalization of developable spaces, and obtained the following:

(1) A Hausdorff space is developable if and only if it is Fréchet and

g-developable.

(2) A Hausdorff space is g-developable if and only if it is Cauchy.

(3) A Hausdorff g-developable space is a quotient π-image of a metric

space.
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In 1991, Tanaka showed that a Hausdorff space is weak Cauchy if

and only if it is a quotient π-image of a metric space, and gave an
example explaining weak Cauchy is not necessarily Cauchy.

In this paper, we further discuss a g-developable space, give its
“development” characterizations by using of weak-developments,

cs-covers and sn-covers, and prove that a space is g-developable if and

only if it is a strong compact-covering, quotient π-image of a metric space,

which generalize the result of Lee and Tanaka.

In this paper, all spaces are Hausdorff, all maps are continuous and

surjective. N denotes the set of all natural numbers. ( )Xτ  denotes the

topology on X. For a collection P  of subsets of a space X and a map

,: YXf →  denote ( ){ }P∈PPf :  by ( ).Pf  For the usual product space

∏
∈Ni

iX ,  iπ  denotes the projection of ∏
∈Ni

iX  onto .iX  For a sequence { }nx

in X, denote { }.: Nnxx nn ∈=

Definition 1.1. Let YXf →:  be a map. Then

(1) f is called a compact-covering [12] (respectively, pseudo-sequence-

covering [5]) map, if each compact subset (respectively convergent

sequence including its limit point) of Y is the image of some compact

subset of X.

(2) f is a sequence-covering map [15], if whenever { }ny  is a convergent

sequence in Y, then there exists a convergent sequence { }nx  in X such

that each ( ).1
nn yfx −∈

f is called strong compact-covering, if it is both a compact-covering
and a sequence-covering.

(3) f is called a π-map [14], if ( )dX ,  is a metric space, and for each

Yy ∈  and its open neighborhood V in ( ( ) ( )) .0\,, 11 >−− VfMyfdY

Definition 1.2 [3]. Let X be a space, and .XP ⊂  Then

(1) a sequence { }nx  in X is called eventually in P, if { }nx  converges to

x, and there exists Nm ∈  such that { } { } .: Pmnxx n ⊂≥∪
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(2) P is called a sequential neighborhood of x in X, if whenever a

sequence { }nx  in X converges to x, then { }nx  is eventually in P.

(3) X is called a sequential space, if any XA ⊂  which is a sequential

neighborhood of each of its points is open in X.

Definition 1.3 [10]. Let P  be a collection of subsets of a space X.

Then

(1) P  is called a cs-cover for X, if P  is a cover for X, and every

convergent sequence in X is eventually in some element of .P

(2) P  is called an sn-cover for X, if P  is a cover for X, every element

of P  is a sequential neighborhood of some point in X, and for each Xx ∈

there exists a sequential neighborhood P of x in X such that .P∈P

(3) P  is called a cfp (i.e., compact finite partition) cover of a compact

subset K in X, if there is a finite collection { }JK ∈αα :  of closed subsets

of K and { } P⊂∈αα JP :  such that { }JKK ∈α= α :∪  and each αK

.α⊂ P

P  is called a cfp-cover for X, if P  is a cover for X, and for any

compact subset K of X, there exists a finite subcollection PP ⊂∗  such

that ∗P  is a cfp cover of K in X.

Definition 1.4. Let { }nP  be a sequence of covers of a space X.

(1) { }nP  is called a point-star network for X, if for each ,Xx ∈

( )nxst P,  is a network of x in X.

(2) { }nP  is called a weak-development for X, if for each ,Xx ∈

( )nxst P,  is a weak neighborhood base for X.

Definition 1.5 [1]. Let ( )dX ,  be a symmetrizable space. Then

(1) a sequence { }nx  in X is called d-Cauchy, if for each ,0>ε  there

exists Nk ∈  such that ( ) ε<nm xxd ,  for all ., kmn >

(2) X is called Cauchy, if each convergent sequence in X is d-Cauchy.
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For a space X, let g be a map defined on XN ×  to the power-set of X

such that ( )xngx ,∈  and ( ) ( )xngxng ,,1 ⊂+  for each Nn ∈  and

,Xx ∈  a subset U of X is open if for each ,Ux ∈  there exists Nn ∈

such that ( ) ., Uxng ⊂  We call such a map a CWC-map (i.e., countable

weakly-open covering map).

Definition 1.6 [7]. A space X is called g-developable, if X has a

CWC-map g with the following property: If ( )nn gngxx ,, ∈  for each

,Nn ∈  then sequence { }nx  converges to x.

2. Results

Theorem 2.1. The following are equivalent for a space X:

(1) X is a g-developable space.

(2) X is a Cauchy space.

(3) X has a weak-development consisting of cs-covers.

(4) X has a weak-development consisting of sn-covers.

(5) X is a strong compact-covering, quotient π-image of a metric space.

(6) X is a sequence-covering, quotient π-image of a metric space.

Proof. (1) ⇔  (2) follows from Theorem 2.3 in [7].

(2) ⇒  (3) Suppose X is a Cauchy space. For each ,Nn ∈  put

( ){ }{ }nAyxyxdXAn 1,:,sup: <∈⊂=P

then ( ) ( )nxBxst n 1,, =P  for each ,Xx ∈  so { }nP  is a point-star network

for X.

For each sequence { }nx  converging to ,Xx ∈  since { }nx  is d-Cauchy

and X is symmetrizable, then there exists Nm ∈  such that ( ) <ixxd ,

( )11 +n  and ( ) ( )11, +< nxxd ji  for all mji ≥,  by Lemma 9.3 in [4].

Put

{ } { }mixxP i ≥= :∪

then .nP P∈  Hence each nP  is a cs-cover for X.
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Obviously, X is a sequential space. For each Xx ∈  and ,Nn ∈  since

nP  is a cs-cover for X, then ( )nxst P,  is a sequential neighborhood of x in

X. So ( )kxst P,  is a weak neighborhood base of x in X. Thus, { }nP  is a

weak-development for X.

(3)⇒  (4) Suppose { }nP  is a cs-cover weak-development for X. We can

assume that 1+nP  refines nP  for each .Nn ∈  For each ,, Xyx ∈  denotes

( ) ( ){ } ( ).,:min, yxystxnyxt n ≠∉= P
We define

( ) ( )



≠
=

= − ,,2
,,0

, , yx
yx

yxd yxt

then [ )∞+→× ,0: XXd  is a symmetric on X.

Claim. For each ( )nystxXyx P,,, ∈∈  if and only if ( ) ., nyxt >

In fact, the if part is obvious. The only if part: Suppose ( )nystx P,∈

but ( ) ,, nyxt ≤  since nP  refine ( ),, yxtP  ( ) ( ( ) ).,, , yxtn ystyst PP ⊂  Note

that ( ( ) ),, , yxtystx P∉  so ( ),, nystx P∉  a contradiction.

For each Xx ∈  and ,Nn ∈  ( ) ( )n
n xBxst 21,, =P  by the Claim.

Because { }nP  is a point-star network for X, then ( )dX ,  is symmetrizable.

And d has the following property: for each Xx ∈  and ,0>ε  there exists

( ) 0, >εδ=δ x  such that ( ) δ<yxd ,  and ( ) δ<zxd ,  imply ( ) ., ε<zyd

Otherwise, there exist 00 >ε  and two sequences { }ny  and { }nz  in X

such that ( ) 0, ε≥nn zyd  whenever ( ) n
nyxd 21, <  and ( ) .21, n

nzxd <

From nP  is a point-star network for X, { }ny  and { }nz  all converge to x.

We choose Nk ∈  such that .21 0ε<k  Since kP  is a cs-cover for X,

{ } Pzy mm ⊂,  for some Nm ∈  and .kP P∈  Thus ( )., kmm zsty P∈  By

the Claim, ( ) ., kzyt mm >  Thus, ( ) ( ) ,2121, 0
, ε<<= kzyt

mm
mmzyd  a

contradiction.

For each Xx ∈  and ,Nn ∈  we can pick ( )nx,δ=δ  such that ( )zyd ,

n1<  whenever ( ) δ<yxd ,  and ( ) ., δ<zxd  Let ( ) ( )( ).,,, nxxBxng δ=
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Since nP  is a cs-cover for X, ( )nxst P,  is a sequential neighborhood of x

in X, so ( )xng ,  is also. Put

( ){ },:, Xxxngn ∈=F

then every nF  is a sn-cover for X.

If { }nF  is not a point-star network for X, then there exist

( )XGx τ∈∈  and two sequences { }nx  and { }ny  in X such that

( )nyngx ,∈  and ∈nx  ( ) .\, Gyng n  So { }nx  does not converge to x, and

( ) ( ),,, nyxyd nn δ<  ( ) ( ).,, nyxyd nnn δ<  By the condition,

( ) .1, nxxd n <  This implies that { }nx  converges x, a contradiction. Hence

is a point-start network for X.

Obviously, X is a sequential space. Since ( )nxst F,  is a sequential

neighborhood of x in X for each Xx ∈  and ,Nn ∈  { }nF  is a weak-

development for X.

(3) ⇒  (2) Suppose { }iP  is a weak-development consisting of cs-covers

for X. We can assume that 1+nP  refines nP  for each .Nn ∈  A similar

proof of (3) ⇒  (4), we can define a symmetric d on X such that ( )nxst P,

( )nxB 21,=  for each Xx ∈  and .Nn ∈  So ( )dX ,  is symmetrizable.

For each sequence { }nx  in X converging to Xx ∈  and ,0>ε  there exists

Nk ∈  such that .21 ε<k  Since kP  is a cs-cover for X, there exist

kP P∈  and Nl ∈  such that { } { } .: Plnxx n ⊂≥∪  If ,, lmn ≥  then

,, Pxx mn ∈  so ( )., kmn xstx P∈  Thus ( ) kxxt mn >,  by the Claim in

(3) ⇒  (4). Hence ( ) ( ) ε<<= kxxt
mn

mnxxd 2121, ,  whenever ., lmn ≥

Therefore { }nx  is d-Cauchy. This implies that X is Cauchy.

(4) ⇒  (5) Suppose { }nP  is a weak-development consisting of sn-

covers for X. For each ,Ni ∈  let { },: ii P Λ∈α= αP  endow iΛ  with the

discrete topology, then iΛ  is a metric space. Put

( )












Λ∈α=α= ∏
∈

αα
Ni

ii XxPM
i

inpoint some at network a forms:
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and endow M with the subspace topology induced from the usual product

topology of the collection { }Nii ∈Λ :  of metric spaces, then M is a metric

space. Since X is Hausdorff, αx  is unique in X. For each .M∈α  We define

XMf →:  by ( ) .α=α xf  For each Xx ∈  and ,Ni ∈  there exists ii Λ∈α

such that .
i

Px α∈  From { }iP  is a point-star network for X, { }NiP
i

∈α :

is a network of x in X. Put ( ),iα=α  then M∈α  and ( ) .xf =α  Thus f is

surjective. Suppose ( ) Mi ∈α=α  and ( ) ( ),XUxf τ∈∈=α  then there

exists Nn ∈  such that .UP
n
⊂α  Put

{ }nnMV αβ∈β= isof coordinate th- the:

then ( ),XV τ∈∈α  and ( ) .UPVf
n
⊂⊂ α  Hence f is continuous.

(1) f is a π-map. For each ,, M∈βα  we define

( ) ( ) ( ){ }



β≠αβπ≠απ
β=α

=βα
,,:1max
,,0

,
kkk

d

then d is a distance on M. Because the topology of M is the subspace
topology induced from the usual product topology of the collection

{ }Nii ∈Λ :  of discrete spaces, thus d is metric on M. For each Ux ∈

( ),Xτ∈  note that { }nP  is a point-star network for X, there exists Nn ∈

such that ( ) ., Uxst n ⊂P  For ( ),1 xf −∈α  ,M∈β  if ( ) ,1, nd <βα  then

( ) ( )βπ=απ ii  for all .ni ≤  So ( ) ( ).βπαπ =∈
nn

PPx  Thus

( ) ( ) ( )∩
Ni

UPPf
ni

∈
βπβπ ⊂⊂∈β .

Hence

( ( ) ( )) .1\, 11 nUfMxfd ≥−−

Therefore f is a π-map.

(2) f is a sequence-covering map.

Suppose { }nx  converges to x in X. For each ,Ni ∈  since every iP  is a

sn-cover for X, then there exists ii Λ∈α  such that 
i

Pα  is a sequential

neighborhood of x in X, so { }nx  is eventually in .
i

Pα  From { }iP  is a point
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-star network for X, 
i

Pα  is a network of x in X. Put ( ) ∏
∈

Λ∈α=β
Ni

iix ,

then ( ).1 xfx
−∈β  For each ,Nn ∈  if ,

i
Pxn α∈  let ;iin α=α  if ,

i
Pxn α∉

pick iin Λ∈α  such that .
in

Pxn α∈  Thus there exists Nni ∈  such that

iin α=α  for all .inn >  So { }inα  converges to .iα  For each ,Nn ∈  put

( ) ,∏
∈

Λ∈α=β
Ni

iinn

then ( )nn xf 1−∈β  and { }nβ  converges to .xβ  Thus f is sequence-covering.

(3) f is a quotient map.

Since f is sequence-covering, by Proposition 2.1.16 in [8], f is quotient.

(4) f is a compact-covering map.

First, we prove that each nP  is a cfp-cover for X. As the proof of

(3) ⇒  (4), we can define [ ),,0: ∞+→×ρ XX  then ρ is a symmetric on

X and ( )ρ,X  is symmetrizable. If K is compact in X, then subspace K is

symmetrizable. Since compact symmetrizable space is metrizable (see

[13]), subspace K is metrizable. For each ,Kx ∈  there exists nxP P∈

such that xP  is a sequential neighborhood of x in X, then ∈x

( ).KPInt xK ∩  Thus ( ){ }KxKPInt xK ∈:∩  is a open cover for subspace

K, so there is a finite collection { }liKi ≤:  of closed subsets of K and

{ ( ) } nxK liKPInt
i

P⊂≤:∩  such that { }liKK i ≤= :∪  and each ⊂iK

( ).KPInt
ixK ∩  Hence { }liP

ix ≤:  is a cfp-cover of K in X. This implies

that each nP  is a cfp-cover for X.

Next, we prove that f is compact-covering. Suppose K is compact in X.

From each nP  is a cfp-cover for X, there exists its finite subcollection

K
nP  such that K

nP  is a cfp-cover of K in X. Thus there is a finite

collection { }nJK ∈αα :  of closed subsets of K and { } K
nnJP P⊂∈αα :

such that { }nJKK ∈α= α :∪  and each .αα ⊂ PK  Obviously, each αK

is compact in X. Put
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( ) ,,:












∅≠∈αα=
∈

α∩
Ni

iii i
KJL

then

(i) L is compact in M.

In fact, ( ) ∩
Ni

i i
KL

∈
α ∅=∉α∀ .,  From ∩

Ni
i

K
∈

α ∅= ,  there exists Nn ∈0

such that .
0

1
∩
n

i
i

K
=

α ∅=

Put

( ){ },1,,: 0niJW iiiii ≤≤α=β∈ββ=

then W is a open neighborhood of ( )iα  in ,∏
∈Ni

iJ  and .∅=LW ∩  Thus L

is closed in .∏
∈Ni

iJ  By ∏
∈Ni

iJ  is compact in ∏
∈

Λ
Ni

i ,  L is compact in M.

(ii) ( ) ., KLfML =⊂

In fact, ( ) ,Li ∈α∀  .∩
Ni

i
K

∈
α ∅≠  Pick ∩

Ni
i

Kx
∈

α∈ ,  then 
i

Pα  is a

network of x in X, so ( ) .Mi ∈α  This implies .ML ⊂

,Kx ∈∀  for each ,Ni ∈  pick ii J∈α  such that .
i

Kx α∈  Thus

( )( ) ,xf i =α  so ( ).LfK ⊂  Obviously, ( ) .KLf ⊂  Hence ( ) .KLf =

In words, f is compact-covering.

(5) ⇒  (6) is obvious.

(6) ⇒  (3) Suppose X is a image of a metric space ( )dM ,  under a

sequence-covering, quotient π-map f. For each ,Nn ∈  put { ( )nzBn 1,=B

}Mz ∈:  and ( ),nn f BP =  here ( ) ( ){ }.1,:1, nyzdMynzB <∈=  Then

{ }nP  is a point-star network for X. In fact, for each Xx ∈  and its open

neighborhood U, since f is a π-map, there exists Nn ∈  such that

( ( ) ( )) .1\, 11 nUfMxfd >−−  We can pick Nm ∈  such that .2nm ≥  If
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Mz ∈  with ( )( ),1, mzBfx ∈  then

( ) ( ) .1,1 ∩ ∅≠− mzBxf

If ( ) ( ),1, 1 UfmzB −⊄  then

( ( ) ( )) ,12\, 11 nmUfMxfd ≤≤−−

a contradiction. Thus ( ) ( ),1, 1 UfmzB −⊂  so ( )( ) .1, UmzBf ⊂  Hence

( ) ., Uxst m ⊂P  This implies that { }nP  is a point-star network for X.

It is clear that X is a sequential space. We need only prove that each

nP  is a cs-cover for X. For each ,Nn ∈  since nB  is a cs-cover for M and

sequence-covering maps preserve cs-covers, nP  is a cs-cover for X.

Example 2.2. Let Z be the topological sum of the unite interval

[ ],1,0  and the collection ( ) [ ]{ }1,0: ∈xxS  of ω2  convergent sequence

( ).xS  Let X be the space obtained from Z by identifying the limit point of

( )xS  with [ ],1,0∈x  for each [ ].1,0∈x  Then, from Example 2.9.27 in [8]

or see Example 9.8 in [5], we have the following facts:

 (1) X is a compact-covering, quotient compact image of a locally
compact metric space.

(2) X has no point-countable cs-networks.

From the fact above, Theorem 1 in [9] and Theorem 2.1, the following
holds:

A compact-covering, quotient π-image of a metric space is not a

g-developable space.
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