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Abstract

In this paper, we give some characterizations of g-developable spaces,
which prove that a space is g-developable if and only if it has a weak-
development consisting of ¢s-covers (sn-covers), or it is a strong compact-

covering, quotient m-images of a metric space.
1. Introduction and Definitions
In 1976, Lee [7] introduced the concept of g-developable spaces as a

generalization of developable spaces, and obtained the following:

(1) A Hausdorff space is developable if and only if it is Fréchet and
g-developable.

(2) A Hausdorff space is g-developable if and only if it is Cauchy.

(3) A Hausdorff g-developable space is a quotient n-image of a metric

space.

2000 Mathematics Subject Classification: 54E40, 54E99, 54C10, 54D55.

Key words and phrases: g-developable spaces, Cauchy spaces, cs-covers, sn-covers, weak-

developments, point-star networks, strong compact-covering maps, n-maps.

This work is supported by NNSF of China (No. 10271026), NSF of Hunan province in China
(No. 04JJ6028), NSF of the Provincial Office of Education of Hunan.

© 2004 Pushpa Publishing House



182 ZHAOWEN LI, SHOU LIN and PENGFEI YAN

In 1991, Tanaka showed that a Hausdorff space is weak Cauchy if
and only if it 1s a quotient m-image of a metric space, and gave an
example explaining weak Cauchy is not necessarily Cauchy.

In this paper, we further discuss a g-developable space, give its
“development” characterizations by using of weak-developments,
cs-covers and sn-covers, and prove that a space is g-developable if and
only if it is a strong compact-covering, quotient n-image of a metric space,
which generalize the result of Lee and Tanaka.

In this paper, all spaces are Hausdorff, all maps are continuous and
surjective. N denotes the set of all natural numbers. t©(X) denotes the
topology on X. For a collection P of subsets of a space X and a map

f:X =Y, denote {f(P): P € P} by f(P). For the usual product space

H X;, m; denotes the projection of H X; onto X;. For a sequence {x,,}
ieN ieN
in X, denote (x,) = {x,, : n € N}.

Definition 1.1. Let f : X — Y be a map. Then

(1) f is called a compact-covering [12] (respectively, pseudo-sequence-
covering [b]) map, if each compact subset (respectively convergent
sequence including its limit point) of Y is the image of some compact
subset of X.

(2) f is a sequence-covering map [15], if whenever {y,} is a convergent

sequence in Y, then there exists a convergent sequence {x,} in X such

that each x, € f~1(y,).

f is called strong compact-covering, if it is both a compact-covering
and a sequence-covering.

(3) f is called a n-map [14], if (X, d) is a metric space, and for each
y € Y and its open neighborhood Vin Y, d(f(y), M\f~}(V)) > 0.
Definition 1.2 [3]. Let X be a space, and P ¢ X. Then

(1) a sequence {x,} in X is called eventually in P, if {x,} converges to

x, and there exists m € N such that {x}U {x,, : n > m} c P.
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(2) P is called a sequential neighborhood of x in X, if whenever a

sequence {x, } in X converges to x, then {x,} is eventually in P.

(3) X is called a sequential space, if any A < X which is a sequential

neighborhood of each of its points is open in X.

Definition 1.3 [10]. Let P be a collection of subsets of a space X.
Then

(1) P 1is called a cs-cover for X, if P 1is a cover for X, and every

convergent sequence in X is eventually in some element of P.

(2) P is called an sn-cover for X, if P is a cover for X, every element
of P 1is a sequential neighborhood of some point in X, and for each x € X

there exists a sequential neighborhood P of x in X such that P  P.

(3) P 1is called a c¢fp (i.e., compact finite partition) cover of a compact

subset K in X, if there is a finite collection {K, : o € J} of closed subsets
of Kand {P, : a € J} = P such that K = U{K, : @ € J} and each K,
c P,.

P is called a cfp-cover for X, if P is a cover for X, and for any
compact subset K of X, there exists a finite subcollection P* — P such

that P* is a ¢fp cover of Kin X.
Definition 1.4. Let {P,} be a sequence of covers of a space X.

(1) {P,} 1is called a point-star network for X, if for each x e X,
(st(x, P,)) is a network of x in X.

(2) {P,} is called a weak-development for X, if for each x e X,
st(x, P, )) is a weak neighborhood base for X.
n

Definition 1.5 [1]. Let (X, d) be a symmetrizable space. Then

(1) a sequence {x,} in X is called d-Cauchy, if for each ¢ > 0, there

exists k£ € N such that d(x,,, x,) < ¢ forall n, m > k.

(2) X is called Cauchy, if each convergent sequence in X is d-Cauchy.
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For a space X, let g be a map defined on N x X to the power-set of X
such that x € g(n, x) and g(n+1, x) = g(n, x) for each n e N and

x € X, a subset U of X is open if for each x € U, there exists n € N
such that g(n, x) « U. We call such a map a CWC-map (i.e., countable

weakly-open covering map).

Definition 1.6 [7]. A space X is called g-developable, if X has a
CWC-map g with the following property: If x, x,, € g(n, g,,) for each

n € N, then sequence {x,} converges to x.

2. Results

Theorem 2.1. The following are equivalent for a space X:

(1) X is a g-developable space.

(2) X'is a Cauchy space.

(3) X has a weak-development consisting of cs-covers.

(4) X has a weak-development consisting of sn-covers.

(5) X is a strong compact-covering, quotient n-image of a metric space.

(6) X is a sequence-covering, quotient n-image of a metric space.

Proof. (1) & (2) follows from Theorem 2.3 in [7].

(2) = (3) Suppose X is a Cauchy space. For each n € N, put

P, ={A < X : sup{d(x, y): x, y € A} <1/n}

then st(x, P,) = B(x, 1/n) for each x € X, so {P,} is a point-star network
for X.

For each sequence {x,} converging to x € X, since {x,} is d-Cauchy
and X is symmetrizable, then there exists m € N such that d(x, x;) <
1/(n+1) and d(x;, x;) <1/(n+1) for all i, j > m by Lemma 9.3 in [4].
Put

P={x}U{x; :i>m}

then P € P,. Hence each P, is a cs-cover for X.
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Obviously, X is a sequential space. For each x € X and n € N, since
P, is a cs-cover for X, then st(x, P,) is a sequential neighborhood of x in
X. So (st(x, Py)) is a weak neighborhood base of x in X. Thus, {P,} is a

weak-development for X.

(83)= (4) Suppose {P,} is a cs-cover weak-development for X. We can

assume that P, ,; refines P, for each n € N. For each x, y € X, denotes

t(x, y) = min{n : x & st(y, P,)} (x = ).
We define

0, X =Y,
d(x7 y) = {z—t(x,y) x = y

then d : X x X — [0, +) is a symmetric on X.
Claim. For each x, y € X, x € st(y, P,) if and only if t(x, y) > n.

In fact, the if part is obvious. The only if part: Suppose x € st(y, P,)
but t(x, y) < n, since P, refine Py ), st(y, P,) < st(y, Pyy,y))- Note

that x ¢ st(y, Pt(x,y))’ so x ¢ st(y, P,), a contradiction.

For each x € X and n e N, st(x, P,) = B(x, 1/2") by the Claim.
Because {P,} is a point-star network for X, then (X, d) is symmetrizable.
And d has the following property: for each x € X and ¢ > 0, there exists
8 = 8(x, €) > 0 such that d(x, y) < 8 and d(x, z) < & imply d(y, z) < «.
Otherwise, there exist ¢y > 0 and two sequences {y,} and {z,} in X
such that d(y,, z,) = g9 whenever d(x, y,,) <1/2" and d(x, z,) < 1/2".
From P, is a point-star network for X, {y,} and {z,} all converge to x.
We choose k € N such that 1/2k < gg. Since Pj is a cs-cover for X,
{Ym> Zm} < P for some m € N and P € P,. Thus y,, € st(z,,, P). By
the Claim, #(y,,, 2,,) > k. Thus, d(y,,, z,) = 1/20m2m) < 1/2k < ¢/ o
contradiction.

For each x € X and n € N, we can pick § = §(x, n) such that d(y, z)
< 1/n whenever d(x, y) < 8 and d(x, z) < 8. Let g(n, x) = B(x, 3(x, n)).
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Since P, is a cs-cover for X, st(x, P,) is a sequential neighborhood of x
in X, so g(n, x) is also. Put

F, =1gn, x): x e X},
then every F,, is a sn-cover for X.

If {F,} is not a point-star network for X, then there exist
xeGet(X) and two sequences f{x,} and {y,} in X such that
x € gn, y,) and x, € g(n, y,)\G. So {x,} does not converge to x, and
d(y,, x) < 8(y,, n), d(y,, x,) < (v, n). By the  condition,
d(x, x,,) < 1/n. This implies that {x, } converges x, a contradiction. Hence

1s a point-start network for X.

Obviously, X is a sequential space. Since st(x, F,) is a sequential
neighborhood of x in X for each x € X and n e N, {F,} is a weak-
development for X.

(3) = (2) Suppose {P;} is a weak-development consisting of cs-covers
for X. We can assume that P, ,; refines P, for each n € N. A similar
proof of (3) = (4), we can define a symmetric d on X such that st(x, P,)
= B(x, 1/2") for each x € X and n e N. So (X, d) is symmetrizable.
For each sequence {x,} in X converging to x € X and ¢ > 0, there exists
ke N such that 1/2* <& Since P), is a cs-cover for X, there exist
PeP, and l € N such that {x}U{x, :n>1} c P. If n, m >, then
X, X, € P, so x, e st(x,,, P.). Thus #(x,, x,,) >k by the Claim in
(3) = (4). Hence d(x,, x,,) = 1/2/®n*m) < 1/2% < ¢ whenever n, m > L.

Therefore {x,} is d-Cauchy. This implies that X is Cauchy.

(4) = (5) Suppose {P,} is a weak-development consisting of sn-
covers for X. For each i € N, let P; = {P, : o € A;}, endow A; with the

discrete topology, then A; is a metric space. Put

M = {oc =(a;) € HAi : (Py;) forms a network at some point x, in X}
ieN
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and endow M with the subspace topology induced from the usual product
topology of the collection {A;:ie N} of metric spaces, then M is a metric
space. Since X is Hausdorff, x, is unique in X. For each a € M. We define
f: M- X by f(a)=2x,. Foreach x € X and i € N, there exists a; € A;
such that x € P, . From {P;} is a point-star network for X, {P,, :i € N}
is a network of x in X. Put o = (a;), then o € M and f(a) = x. Thus fis
surjective. Suppose o = (a;) € M and f(a) = x € U € ©(X), then there
exists n € N such that P, < U. Put

V = {B € M : the n-th coordinate of B is a,,}

then a € V € 1(X), and f(V) ¢ P, < U. Hence fis continuous.

(1) fis a r-map. For each a, B € M, we define

0, a =,

e, B) = {max{l/k tmp(o) # mp(B)), o # B,

then d is a distance on M. Because the topology of M is the subspace
topology induced from the usual product topology of the collection
{A; :i e N} of discrete spaces, thus d is metric on M. For each x € U

e ©(X), note that {P,} is a point-star network for X, there exists n € N

such that st(x, P,) = U. For a e f1(x), B e M, if d(a, B) < 1/n, then
ni(a) = m;(B) forall i < n. So x € Py (4) = Py (3)- Thus

FB) € [\ Prip) < Pry) = U-
ieN
Hence
d(f 7 (x), M\fL(U)) 2 V/n.
Therefore fis a n-map.
(2) f is a sequence-covering map.
Suppose {x,,} converges to x in X. For each i € N, since every P; is a

sn-cover for X, then there exists o; € A; such that P, is a sequential

neighborhood of x in X; so {x,} is eventually in P,;. From {P;} is a point
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-star network for X, (P, ) is a network of x in X. Put B, = (o;) € T2
ieN

then B, € f1(x). For each n e N, if x,, e Py, let oy = oy if x, 2 Py,
pick a;, € A; such that x, € P, . Thus there exists n; € N such that
a;, = a; forall n > n;. So {a;,} converges to a;. For each n € N, put
Prn = (ain) € HAi’
ieN
then B, € f_l(xn) and {B,} converges to B,. Thus fis sequence-covering.

(3) f1is a quotient map.

Since f is sequence-covering, by Proposition 2.1.16 in [8], fis quotient.

(4) fis a compact-covering map.

First, we prove that each P, is a cfp-cover for X. As the proof of
(3) = (4), we can define p : X x X — [0, +), then p is a symmetric on
X and (X, p) is symmetrizable. If K is compact in X, then subspace K is

symmetrizable. Since compact symmetrizable space is metrizable (see
[13]), subspace K is metrizable. For each x € K, there exists P, € P,

such that P, 1is a sequential neighborhood of x in X, then x e
Intg (P, N K). Thus {Intg(P, N K): x € K} is a open cover for subspace
K, so there is a finite collection {K; : i <[} of closed subsets of K and
{ntg(P,, NK):i <l c P, suchthat K = U{K; : i <[} and each K; ¢
Intg (Py, N K). Hence {P, :i <1} is a cfp-cover of K in X. This implies
that each P, is a cfp-cover for X.

Next, we prove that fis compact-covering. Suppose K is compact in X.

From each P, is a cfp-cover for X, there exists its finite subcollection
73,{{ such that 77,{{ is a cfp-cover of K in X. Thus there is a finite

collection {K,, : o e J,} of closed subsets of K and {P, : a € J,} = PK
such that K = U{K, : a € J,;} and each K, c P,. Obviously, each K

is compact in X. Put
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L = {((Xi) Loy e Ji’ ﬂKai * @},
ieN
then
(1) L is compact in M.

In fact, V(a;) ¢ L, nKui = . From ﬂchi = ), there exists ng € N
ieN ieN

ng
such that ﬂ K, =%@.
i=1

Put

then Wis a open neighborhood of (a;) in H J;, and WN L = &. Thus L

ieN
is closed in H J;. By H J; is compact in H A;, L1is compact in M.
ieN ieN ieN

(i) L = M, f(L) = K.

In fact, V(o;) e L, [|K,; # @. Pick x € [|K
ieN ieN
network of x in X, so (a;) € M. This implies L = M.

then (P, ) is a

;-

Vx € K, for each i e N, pick a; € J; such that x € K,,. Thus
f((e;)) = x, so K < f(L). Obviously, f(L) = K. Hence f(L) = K.

In words, fis compact-covering.
(5) = (6) 1s obvious.

(6) = (3) Suppose X is a image of a metric space (M, d) under a
sequence-covering, quotient n-map f. For each n € N, put B,, = {B(z, 1/n)
:ze M} and P, = f(B,,), here B(z,1/n) = {y € M : d(z, y) < 1/n}. Then
{P,} is a point-star network for X. In fact, for each x € X and its open
neighborhood U, since f is a m-map, there exists n € N such that

d(f Y(x), M\fY(U)) > 1/n. We can pick m € N such that m > 2n. If
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z € M with x € f(B(z, 1/m)), then

f_l(x)ﬂB(z, 1/m) = @.
If B(z,1/m) « f~}(U), then
d(f (@), M\fT'U)) < 2/m < 1n,

a contradiction. Thus B(z, 1/m)  f~}(U), so f(B(z, 1/m)) = U. Hence
st(x, P,,) < U. This implies that {P,} is a point-star network for X.

It is clear that X is a sequential space. We need only prove that each

P, is a cs-cover for X. For each n € N, since B, is a cs-cover for M and

sequence-covering maps preserve cs-covers, P, is a cs-cover for X.

Example 2.2. Let Z be the topological sum of the unite interval
[0, 1], and the collection {S(x): x € [0, 1]} of 2® convergent sequence
S(x). Let X be the space obtained from Z by identifying the limit point of
S(x) with x € [0, 1], for each x € [0, 1]. Then, from Example 2.9.27 in [8]
or see Example 9.8 in [5], we have the following facts:

(1) X is a compact-covering, quotient compact image of a locally

compact metric space.
(2) X has no point-countable cs-networks.

From the fact above, Theorem 1 in [9] and Theorem 2.1, the following
holds:

A compact-covering, quotient m-image of a metric space is not a

g-developable space.
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