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1. INTRODUCTION

To find internal characterizations of certain images of metric spaces is one of the
central problems in General Topology. Recently, S. Xia [4] introduced the concept
of weak-open mappings. By using it, certain g-first countable spaces are character-
ized as images of metric spaces under various weak-open mappings. Papers [6],
(8], [9], [10], [11], [20] have done some wonderful work on g-metrizable spaces,
but have only investigated internal characterizations of g-metrizable spaces. The
present paper establishes the relationships between g-metrizable spaces (spaces with
compact-countable weak-bases) and metric spaces by means of weak-open mappings,
m-mappings and o-mappings (weak-open mappings and cs-mappings, respectively).

In this paper, all spaces are regular and T3, all mappings are continuous and
surjective. N denotes the set of all natural numbers, w denotes N U {0}. For a
collection & of subsets of a space X and a mapping f: X — Y, denote f(&?) =
{f(P): Pe Z}.

Definition 1.1. Let & be a cover of a space X. & is called compact-countable
if for each compact subset K of Y, only countably many members of &2 intersect K.

This work is supported by the NNSF of China.

393



Definition 1.2. Let & = |J{Z,: = € X} be a collection of subsets of a space X
satisfying that for each = € X,
(1) &2, is a network of x in X,
(2) it U,V € Py, then W CUNV for some W € &,.

2 is called a weak-base for X [2] if a subset G of X is open in X if and only if
for each = € G, there exists P € &2, such that P C G.
A space X is called a g-metrizable space [3] if X has a o-locally finite weak-base.

Definition 1.3. Let f: X — Y be a mapping.

(1) f is a weak-open mapping [4] if there exists a weak-base #Z = |J{%,: y€ Y}
for Y, and for y € Y there exists z(y) € f~1(y) satisfying condition (x): for
each open neighbourhood U of z(y), B, C f(U) for some B, € A,.

(2) f is a cs-mapping [5] if for each compact subset K of Y, f~!(K) is separable
in X.

(3) fis a o-mapping [1] if there exists a base & for X such that f(2) is a o-locally
finite collection of subsets of Y.

(4) f is a m-mapping [19] if (X, d) is a metric space, and for each y € Y and its
open neighbourhood V in Y, d(f~(y), X \ f~%(V)) > 0.

It is easy to check that a weak-open mapping is a quotient mapping.

2. THE WEAK-OPEN 0-IMAGE OF A METRIC SPACE

Lemma 2.1 [6]. Suppose (X,d) is a metric space and f: X — Y is a quotient
mapping. Then Y is a symmetric space if and only if f is a T-mapping.

Theorem 2.2. The following are equivalent for a space X :
(1) Y is a g-metrizable space.
(2) Y is a weak-open, m, o-image of a metric space.
(3) Y is a weak-open o-image of a metric space.

Proof. (1) = (2) Suppose Y is a g-metrizable space, then Y has a o-locally
finite weak-base. Let &2 = |J{Z%: i € N} be a o-locally finite weak-base for Y,
where each &2; = {P,: a € A;} is locally finite in Y which is closed under finite
intersections and Y € &; C #;,1. For each i € N, endow A; with discrete topology.
Then A; is a metric space. Put

X = {a = () € H Ai: {Py,: i € N} C & forms a network
ieN

at some point z(a) € Y},
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and endow X with the subspace topology induced from the usual product topology
of the collection {4;: ¢ € N} of metric spaces. Then X is a metric space. Since
Y is Hausdroff, z(«) is unique in Y for each @ € X. We define f: X — Y by
fla) = z(a) for each @ € X. Because & is a o-locally finite weak-base for YV,
we couclude that f is surjective. For each a@ = (o) € X, f(a) = z(«). Suppose
V is an open neighbourhood of z(a) in Y. Then there exists n € N such that
z(a) € Py, CV. Ifweset W = {c € X: the n-th coordinate of ¢ is ay}, then W is
an open neighbourhood of @ in X and f(W) C P,, C V. Hence f is continuous.
We will show that f is a weak-open o-mapping.

(i) f is a o-mapping.

For each n € N and «,, € A, put

V(a,...,an) ={8 € X: for each i < n, the i-th coordinate of 5 is a;}.

It is easy to check that {V(aq,...,a,): n € N} is a locally neighbourhood base of «
in X.

Let Z={V(aq,...,an): a; € A; (i <n)andn € N}; then £ is a base for X. To
prove that f is a o-mapping, we only need to check that f(V(a1,...,an)) = [ Pa,

i<n
for each n € N and «,, € A,, because f(Z#) is o-locally finite in Y by this result.
For each n € N, o, € A, and ¢ < n we have f(V(ai,...,an)) C P,,;, hence

f(V(aa,...,an)) C () Pa;- On the other hand, for each € () Pa, there is
i<n i<n

B = (B;) € X such that f(8) = . For each j € N, Pg, € #; C Pjin, hence

there is aj1,, € Aj;, such that P, = Pg,. Set a = (a;), then a € V(ay,...,an)

and f(a) =x. Thus () P, C f(V(aq,...,ap)), hence f(V(aq,...,an)) = [ Pa;-
i<n i<n

Therefore, f is a o-mapping.

(i) f is a weak-open mapping.

Denote &, ={P € &: y € P}; then & = | J{Z: ye Y}

For each y € Y, by is the idea 2, there exists (a;) € () A; such that {P,: i €

ieN
N} C & is a network of y in Y, hence a = (a;) € f~1(y). )

Suppose G is an open neighbourhood of @ in X. Then there exists j € N such
that V(ai,...,¢e;) C G. Thus f(V(as,...,;)) C f(G). By (i), f(V(a,...,¢5)) =
N Pa;- So P, C () Py, for some P, € &,. Hence P, C f(G).
i<j i<j

JHence there existg aweak-base & for Y and « € f~1(y) satisfying the condition (x)
from Definition 1.3(1). Therefore f is a weak-open mapping.

(iii) f is a m-mapping.

By (ii), f is a quotient mapping. Since a g-metrizable space is symmetric, f is a
m-mapping by Lemma 2.1.
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(2) = (3) is clear.

(3) = (1). Suppose Y is the image of a metric space X under a weak-open o-
mapping f. Since f is a o-mapping, there exists a base % for X such that f(%) is
o-locally finite in Y. And since f is a weak-open mapping, there exists a weak-base
P =\ J{P: y € Y} for Y such that for each y € Y there exists z(y) € f~(y)
satisfying the condition (x) from Definition 1.3(1). For each y € Y, put

Fy={f(B): z(y) € B € #},
F=|JF:yev}

Obviously, # C f(#), hence Z is o-locally finite in Y. We will prove that .7 is a
weak-base for Y.

It is obvious that .% satisfies the condition (1) from Definition 1.2. For eachy € Y,
suppose U,V € Z,; then there exist B; € % and B, € % such that z(y) € B1 N By
and f(B1) =U, f(B2) =V. Since # is a base for X, there exists B € % such that
z(y) € B C ByN By. Thus f(B) € %, and f(B) C f(BiNBz) C UNV. Hence
F satisfies the condition (2) from Definition 1.2.

Suppose G C Y is open in Y, then z(y) € f~1(G) for each y € G. Since % is a
base for X, we have z(y) € B C f~!(G) for some B € #. Thus f(B) € %, and
f(B) C G. On the other hand, suppose that G C Y and for y € G there exists
F € #, such that FF C G. Then there exists B € # such that z(y) € B and
F = f(B). Since B is an open neighbourhood of z(y), there exists P, € &7, such
that Py, C f(B). Thus for each y € G there exists P, € &, such that P, C G. Hence
G is open in Y because &2 is a weak-base for Y. So % is a weak-base for Y.

Therefore Y is a g-metrizable space. O

3. THE WEAK-OPEN cs-IMAGE OF A METRIC SPACE

Theorem 3.1. A space Y has a compact-countable weak-base if and only if Y is
a weak-open cs-image of a metric space.

Proof. Sufficiency. Suppose Y is the image of a metric space X under a
weak-open cs-mapping f. Since f is a weak-open mapping, there exists a weak-base
% =\J{%B,: y € Y} for Y such that for each y € Y there exists z(y) € f'(y)
satisfying the condition (*) from Definition 1.3(1). Because X is a metric space,
X has a o-locally finite base. Let & be a o-locally finite base for X. For each
P e P, put

PBp={BecAB: BC f(P)},
Bp = U%P,
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then Bp C f(P). For each compact subset K of Y, since f is a cs-mapping, f 1 (K)
is separable in X. So f~!(K) is a Lindelsf subspace of X. Because a locally finite
collection of a Lindelsf space is countable, {P € &#: PN f~1(K) # &} is countable.
Thus f(&?) is compact-countable. Hence #* = {Bp: P € £} is compact-countable.
For each y € Y, put

@; ={Bp € #*: B, € Bp for some By, € By},
%’;’ = {ﬂ U : % is a finite subcollection of %’;},

B =2, yeY},

then %" is compact-countable. We will prove that #” is a weak-base for Y. It is
easy to check that " satisfies the condition (1), (2) from Definition 1.2.

Suppose V is open in Y for each y € V, since & is a base for X, then z(y) € P C
f7Y(V) for some P € &. Thus there exists B, € %, such that B, C f(P), and so
By, € #p. Hence Bp € %, C %,/ and Bp C f(P) C V. On the other hand, suppose
V C Y is such that for each y € V, B C V for some B € %’;’ By the properties
of %' and A" and the condition (2) from Definition 1.2, there exists B, € %, such
that y € B, C B C V. Because Z = |J{#,: y € Y} is a weak-base for Y, V is open
in Y. Therefore #” is a weak-base for Y.

Necessity. Suppose & is a compact-countable weak-base for Y. Endow & with
discrete topology, then & is a metric space. Put X = {(P,) € #%: {P,: n € N} is
a network of some point y € Y}, and endow X with the subspace topology induced
by the product topology of the usual product space #“. Then X is a metric space.

Since Y is Hausdroff, y is unique in Y (in fact, it is easy to check that {y} = () P,).
neN
We define f: X — Y by f((P,)) = y for each (P,) € X. For each y € Y, since

& is point-countable in Y, denoting {P € &: y € P} by (P,), we have (P,) € X
and f((P,)) =y. Thus f is a surjection. It is obvious that f is continuous. We will
prove that f is a weak-open cs-mapping.

(i) f is a weak-open mapping.

For each y € Y, denote a collection of weak neighbourhoods of 3 in Y by &; then
2, is countable. Set 2, = {P,: n € N}, then f((P,)) =y and (P,) € f~!(y). For
each n € N, put

B(Py,...,P,)={(P)) € X: P/ =P, for each i <n}.
It is easy to check that {B(Py,...,P,): n € N} is a locally neighbourhood base of

the point (P,) in X. O
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Claim. f(B(P1,...,P,)) = () P; for eachn € N.

i<n
Suppose (/) € B(Py,..., P,), then f((F))) = () P/ C () P;. Thus f(B(F,...,
Pn)) € () Pi. On the other hand, suppose z € .ﬁENPi and Zsj‘: P, ={P]l;: jEN}
Put = =
Pr=

T

P., r<n,
P/I

ro

r>n,
then (P}) € B(Py,...,P,) and f((P})) = z. Thus (| P; C f(B(P,...,P,)). Hence
i<n

<n

Because & is a weak-base for Y and {P,,: n € N} = &, we obtain f(B(P,...,
P))) = (P € &, for each n € N. Suppose G is a open neighbourhood of

i<n

the point (P,) in X; then there exists j € N such that B(Py,...,P;) C G. So

f(B(Pi,...,P;)) C f(G). By the Claim, f(B(Py,...,P;)) = (| P, € &,. Hence
i<y

there exists a weak-base & for Y and (P,) € f~1(y) satisfyingjthe condition ()

from Definition 1.3(1). Therefore f is a weak-open mapping.

(i) f is a cs-mapping.

For each compact subset K of Y, since & is compact-countable, hence {P €
Z: PN K # ®} is countable. Thus {P € &: PNK # ®}*“ N X is a hereditarily
separable subspace of X. Because f~}(K) C {P € &: PN K # ®}* N X, thus
f~Y(K) is separable in X. Hence f is a cs-mapping.

Remark 3.2. A mapping f: X — Y is an s-mapping (ss-mapping [16]) if for
each y € Y, f~!(y) is separable in X (for each y € Y, there exists an open neigh-
bourhood V of y in Y such that f~1(V) is separable in X). A mapping f: X — Y
is a 1-sequence-covering mapping [14] if for each y € Y there exists x € f~!(y)
satisfying the following condition: whenever {y,} is a sequence in Y converging to
a point y in Y, there exists a sequence {z,} of X converging to a point z in X such
that each x, € f~'(y,). Obviously, if X is a metric space, then an ss-mapping =
a cs-mapping = an s-mapping. However, we have the following facts.

Example 1. A weak-open s-image of a metric space is not a weak-open cs-image
of a metric space.

Let 1
S:{g: neN}U{OL X =[0,1] x S,

and let
Y:[O,l]x{%: neN}
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have the usual Euclidean topology as a subspace of [0,1] x S. Define a typical
neighbourhood of (¢,0) in X to be of the form

{(t,0)}U (U V(t,l/k)), neNn,

k>n

where V(t,1/k) is a neighbourhood of (¢,1/k) in [0,1] x {1/k}. Put

M = (@[0,1} x {1/n}> @ ( P {t} x 5)

neN t€[0,1]

and define f from M onto X such that f is an obvious mapping.

Then f is a compact-covering, quotient, two-to-one mapping from the locally
compact metric space M onto the separable, regular, non-Lindelsf, k-space X (see
Example 2.8.16 of [13] or Example 9.3 of [18]). It is easy to check that f is a
1-sequence-covering mapping. By Theorem 2.5 of [14], X has a point-countable
weak-base. Thus X is a weak-open s-image of a metric space by Theorem 2.5 of [4].

X has no compact-countable k-network. Indeed, suppose & is a compact-
countable k-network for X. Put

F={{(t,0)}: te[0,1}U{PNY: Pe P}

Since [0, 1] x {0} is a closed discrete subspace of X, .# is a k-network for X. But
Y is a o-compact subspace of X. Thus {PNY: P € &} is countable, and so
ZF is star-countable. Since a regular k-space with a star-countable k-network is an
No-space (see [17]), hence X is a Lindelof space, a contradiction. Thus X has no
compact-countable k-network. By Lemma 7 of [15], X has no compact-countable
weak-base. Hence X is not a weak-open cs-image of a metric space by Theorem 3.1.

Example 2. A weak-open cs-image of a metric space is not a weak-open ss-image
of a metric space.

Let X be a paracompact space with a point-countable base and not metrizable.
Then X has a compact-countable base, and so X has a compact-countable weak-
base. By Theorem 3.1, X is a weak-open cs-image of a metric space. But X is not
a l-sequence-covering ss-image of a metric space because X is not a metric space.
Thus X is not a weak-open ss-image of a metric space by Proposition 3.3 of [5].
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