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1. Introduction

To find internal characterizations of certain images of metric spaces is one of the

central problems in General Topology. Recently, S. Xia [4] introduced the concept

of weak-open mappings. By using it, certain g-first countable spaces are character-

ized as images of metric spaces under various weak-open mappings. Papers [6],

[8], [9], [10], [11], [20] have done some wonderful work on g-metrizable spaces,

but have only investigated internal characterizations of g-metrizable spaces. The

present paper establishes the relationships between g-metrizable spaces (spaces with

compact-countable weak-bases) and metric spaces by means of weak-open mappings,

π-mappings and σ-mappings (weak-open mappings and cs-mappings, respectively).

In this paper, all spaces are regular and T1, all mappings are continuous and

surjective. 
 denotes the set of all natural numbers, ω denotes 
 ∪ {0}. For a

collection P of subsets of a space X and a mapping f : X → Y , denote f(P) =

{f(P ) : P ∈ P}.

Definition 1.1. Let P be a cover of a space X . P is called compact-countable

if for each compact subset K of Y , only countably many members ofP intersect K.

This work is supported by the NNSF of China.

393



Definition 1.2. LetP =
⋃

{Px : x ∈ X} be a collection of subsets of a spaceX

satisfying that for each x ∈ X ,

(1) Px is a network of x in X ,

(2) if U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.

P is called a weak-base for X [2] if a subset G of X is open in X if and only if

for each x ∈ G, there exists P ∈ Px such that P ⊂ G.

A space X is called a g-metrizable space [3] if X has a σ-locally finite weak-base.

Definition 1.3. Let f : X → Y be a mapping.

(1) f is a weak-open mapping [4] if there exists a weak-base B =
⋃

{By : y ∈ Y }

for Y , and for y ∈ Y there exists x(y) ∈ f−1(y) satisfying condition (∗): for

each open neighbourhood U of x(y), By ⊂ f(U) for some By ∈ By.

(2) f is a cs-mapping [5] if for each compact subset K of Y , f−1(K) is separable

in X .

(3) f is a σ-mapping [1] if there exists a base B for X such that f(B) is a σ-locally

finite collection of subsets of Y .

(4) f is a π-mapping [19] if (X, d) is a metric space, and for each y ∈ Y and its

open neighbourhood V in Y , d(f−1(y), X \ f−1(V )) > 0.

It is easy to check that a weak-open mapping is a quotient mapping.

2. The weak-open σ-image of a metric space

Lemma 2.1 [6]. Suppose (X, d) is a metric space and f : X → Y is a quotient

mapping. Then Y is a symmetric space if and only if f is a π-mapping.

Theorem 2.2. The following are equivalent for a space X :

(1) Y is a g-metrizable space.

(2) Y is a weak-open, π, σ-image of a metric space.

(3) Y is a weak-open σ-image of a metric space.
���������

. (1) ⇒ (2) Suppose Y is a g-metrizable space, then Y has a σ-locally

finite weak-base. Let P =
⋃

{Pi : i ∈ 
 } be a σ-locally finite weak-base for Y ,

where each Pi = {Pα : α ∈ Ai} is locally finite in Y which is closed under finite

intersections and Y ∈ Pi ⊂ Pi+1. For each i ∈ 
 , endow Ai with discrete topology.

Then Ai is a metric space. Put

X =

{

α = (αi) ∈
∏

i∈ �
Ai : {Pαi

: i ∈ 
 } ⊂ P forms a network

at some point x(α) ∈ Y

}

,
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and endow X with the subspace topology induced from the usual product topology

of the collection {Ai : i ∈ 
 } of metric spaces. Then X is a metric space. Since

Y is Hausdroff, x(α) is unique in Y for each α ∈ X . We define f : X → Y by

f(α) = x(α) for each α ∈ X . Because P is a σ-locally finite weak-base for Y ,

we couclude that f is surjective. For each α = (αi) ∈ X , f(α) = x(α). Suppose

V is an open neighbourhood of x(α) in Y . Then there exists n ∈ 
 such that
x(α) ∈ Pαn

⊂ V . If we setW = {c ∈ X : the n-th coordinate of c is αn}, thenW is

an open neighbourhood of α in X and f(W ) ⊂ Pαn
⊂ V . Hence f is continuous.

We will show that f is a weak-open σ-mapping.

(i) f is a σ-mapping.

For each n ∈ 
 and αn ∈ An, put

V (α1, . . . , αn) = {β ∈ X : for each i 6 n, the i-th coordinate of β is αi}.

It is easy to check that {V (α1, . . . , αn) : n ∈ 
 } is a locally neighbourhood base of α
in X .

LetB = {V (α1, . . . , αn) : αi ∈ Ai (i 6 n) and n ∈ 
 }; then B is a base for X . To

prove that f is a σ-mapping, we only need to check that f(V (α1, . . . , αn)) =
⋂

i6n

Pαi

for each n ∈ 
 and αn ∈ An because f(B) is σ-locally finite in Y by this result.

For each n ∈ 
 , αn ∈ An and i 6 n we have f(V (α1, . . . , αn)) ⊂ Pαi
, hence

f(V (α1, . . . , αn)) ⊂
⋂

i6n

Pαi
. On the other hand, for each x ∈

⋂

i6n

Pαi
there is

β = (βj) ∈ X such that f(β) = x. For each j ∈ 
 , Pβj
∈ Pj ⊂ Pj+n, hence

there is αj+n ∈ Aj+n such that Pαj+n
= Pβj

. Set α = (αj), then α ∈ V (α1, . . . , αn)

and f(α) = x. Thus
⋂

i6n

Pαi
⊂ f(V (α1, . . . , αn)), hence f(V (α1, . . . , αn)) =

⋂

i6n

Pαi
.

Therefore, f is a σ-mapping.

(ii) f is a weak-open mapping.

Denote Py = {P ∈ P : y ∈ P}; then P =
⋃

{Py : y ∈ Y }.

For each y ∈ Y , by is the idea P , there exists (αi) ∈
⋂

i∈ �
Ai such that {Pα : i ∈


 } ⊂ P is a network of y in Y , hence α = (αi) ∈ f−1(y).

Suppose G is an open neighbourhood of α in X . Then there exists j ∈ 
 such
that V (α1, . . . , αj) ⊂ G. Thus f(V (α1, . . . , αj)) ⊂ f(G). By (i), f(V (α1, . . . , αj)) =
⋂

i6j

Pαi
. So Py ⊂

⋂

i6j

Pαi
for some Py ∈ Py. Hence Py ⊂ f(G).

Hence there exists a weak-baseP for Y and α ∈ f−1(y) satisfying the condition (∗)

from Definition 1.3(1). Therefore f is a weak-open mapping.

(iii) f is a π-mapping.

By (ii), f is a quotient mapping. Since a g-metrizable space is symmetric, f is a

π-mapping by Lemma 2.1.
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(2) ⇒ (3) is clear.

(3) ⇒ (1). Suppose Y is the image of a metric space X under a weak-open σ-

mapping f . Since f is a σ-mapping, there exists a base B for X such that f(B) is

σ-locally finite in Y . And since f is a weak-open mapping, there exists a weak-base

P =
⋃

{Py : y ∈ Y } for Y such that for each y ∈ Y there exists x(y) ∈ f−1(y)

satisfying the condition (∗) from Definition 1.3(1). For each y ∈ Y , put

Fy = {f(B) : x(y) ∈ B ∈ B},

F =
⋃

{Fy : y ∈ Y }.

Obviously, F ⊂ f(B), hence F is σ-locally finite in Y . We will prove that F is a

weak-base for Y .

It is obvious thatF satisfies the condition (1) from Definition 1.2. For each y ∈ Y ,

suppose U, V ∈ Fy; then there exist B1 ∈ B and B2 ∈ B such that x(y) ∈ B1 ∩ B2

and f(B1) = U , f(B2) = V . Since B is a base for X , there exists B ∈ B such that

x(y) ∈ B ⊂ B1 ∩ B2. Thus f(B) ∈ Fy and f(B) ⊂ f(B1 ∩ B2) ⊂ U ∩ V . Hence

F satisfies the condition (2) from Definition 1.2.

Suppose G ⊂ Y is open in Y , then x(y) ∈ f−1(G) for each y ∈ G. Since B is a

base for X , we have x(y) ∈ B ⊂ f−1(G) for some B ∈ B. Thus f(B) ∈ Fy and

f(B) ⊂ G. On the other hand, suppose that G ⊂ Y and for y ∈ G there exists

F ∈ Fy such that F ⊂ G. Then there exists B ∈ B such that x(y) ∈ B and

F = f(B). Since B is an open neighbourhood of x(y), there exists Py ∈ Py such

that Py ⊂ f(B). Thus for each y ∈ G there exists Py ∈ Py such that Py ⊂ G. Hence

G is open in Y because P is a weak-base for Y . So F is a weak-base for Y .

Therefore Y is a g-metrizable space. �

3. The weak-open cs-image of a metric space

Theorem 3.1. A space Y has a compact-countable weak-base if and only if Y is

a weak-open cs-image of a metric space.
���������

. Sufficiency. Suppose Y is the image of a metric space X under a

weak-open cs-mapping f . Since f is a weak-open mapping, there exists a weak-base

B =
⋃

{By : y ∈ Y } for Y such that for each y ∈ Y there exists x(y) ∈ f−1(y)

satisfying the condition (∗) from Definition 1.3(1). Because X is a metric space,

X has a σ-locally finite base. Let P be a σ-locally finite base for X . For each

P ∈ P , put

BP = {B ∈ B : B ⊂ f(P )},

BP =
⋃

BP ,
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then BP ⊂ f(P ). For each compact subset K of Y , since f is a cs-mapping, f−1(K)

is separable in X . So f−1(K) is a Lindelöf subspace of X . Because a locally finite

collection of a Lindelöf space is countable, {P ∈ P : P ∩ f−1(K) 6= Φ} is countable.

Thus f(P) is compact-countable. HenceB∗ = {BP : P ∈ P} is compact-countable.

For each y ∈ Y , put

B
′

y = {BP ∈ B
∗ : By ∈ BP for some By ∈ By},

B
′′

y =
{

⋂

U : U is a finite subcollection of B
′

y

}

,

B
′′ =

⋃

{B′′

y : y ∈ Y },

then B′′ is compact-countable. We will prove that B′′ is a weak-base for Y . It is

easy to check that B′′ satisfies the condition (1), (2) from Definition 1.2.

Suppose V is open in Y for each y ∈ V , sinceP is a base for X , then x(y) ∈ P ⊂

f−1(V ) for some P ∈ P . Thus there exists By ∈ By such that By ⊂ f(P ), and so

By ∈ BP . Hence BP ∈ B′

y ⊂ B′′

y and BP ⊂ f(P ) ⊂ V . On the other hand, suppose

V ⊂ Y is such that for each y ∈ V , B ⊂ V for some B ∈ B′′

y . By the properties

of B′ and B′′ and the condition (2) from Definition 1.2, there exists By ∈ By such

that y ∈ By ⊂ B ⊂ V . Because B =
⋃

{By : y ∈ Y } is a weak-base for Y , V is open

in Y . Therefore B′′ is a weak-base for Y .

Necessity. Suppose P is a compact-countable weak-base for Y . Endow P with

discrete topology, then P is a metric space. Put X = {(Pn) ∈ Pω : {Pn : n ∈ 
 } is
a network of some point y ∈ Y }, and endow X with the subspace topology induced

by the product topology of the usual product space Pω. Then X is a metric space.

Since Y is Hausdroff, y is unique in Y (in fact, it is easy to check that {y} =
⋂

n∈ �
Pn).

We define f : X → Y by f((Pn)) = y for each (Pn) ∈ X . For each y ∈ Y , since

P is point-countable in Y , denoting {P ∈ P : y ∈ P} by (Pn), we have (Pn) ∈ X

and f((Pn)) = y. Thus f is a surjection. It is obvious that f is continuous. We will

prove that f is a weak-open cs-mapping.

(i) f is a weak-open mapping.

For each y ∈ Y , denote a collection of weak neighbourhoods of y in Y byPy; then

Py is countable. Set Py = {Pn : n ∈ 
 }, then f((Pn)) = y and (Pn) ∈ f−1(y). For

each n ∈ 
 , put

B(P1, . . . , Pn) = {(P ′

n) ∈ X : P ′

i = Pi for each i 6 n}.

It is easy to check that {B(P1, . . . , Pn) : n ∈ 
 } is a locally neighbourhood base of
the point (Pn) in X . �
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Claim. f(B(P1, . . . , Pn)) =
⋂

i6n

Pi for each n ∈ 
 .

Suppose (P ′

i ) ∈ B(P1, . . . , Pn), then f((P ′

i )) =
⋂

i∈ �
P ′

i ⊂
⋂

i6n

Pi. Thus f(B(P1, . . . ,

Pn)) ⊂
⋂

i6n

Pi. On the other hand, suppose z ∈
⋂

i6n

Pi and set Pz = {P ′′

n+j : j ∈ 
 }.
Put

P ∗

r =

{

Pr, r 6 n,

P ′′

r , r > n,

then (P ∗

r ) ∈ B(P1, . . . , Pn) and f((P ∗

r )) = z. Thus
⋂

i6n

Pi ⊂ f(B(P1, . . . , Pn)). Hence

f(B(P1, . . . , Pn)) =
⋂

i6n

Pi.

Because P is a weak-base for Y and {Pn : n ∈ 
 } = Py, we obtain f(B(P1, . . . ,

Pn)) =
⋂

i6n

Pi ∈ Py for each n ∈ 
 . Suppose G is a open neighbourhood of

the point (Pn) in X ; then there exists j ∈ 
 such that B(P1, . . . , Pj) ⊂ G. So

f(B(P1, . . . , Pj)) ⊂ f(G). By the Claim, f(B(P1, . . . , Pj)) =
⋂

i6j

Pi ∈ Py. Hence

there exists a weak-base P for Y and (Pn) ∈ f−1(y) satisfying the condition (∗)

from Definition 1.3(1). Therefore f is a weak-open mapping.

(ii) f is a cs-mapping.

For each compact subset K of Y , since P is compact-countable, hence {P ∈

P : P ∩ K 6= Φ} is countable. Thus {P ∈ P : P ∩ K 6= Φ}ω ∩ X is a hereditarily

separable subspace of X . Because f−1(K) ⊂ {P ∈ P : P ∩ K 6= Φ}ω ∩ X , thus

f−1(K) is separable in X . Hence f is a cs-mapping.

Remark 3.2. A mapping f : X → Y is an s-mapping (ss-mapping [16]) if for

each y ∈ Y , f−1(y) is separable in X (for each y ∈ Y , there exists an open neigh-

bourhood V of y in Y such that f−1(V ) is separable in X). A mapping f : X → Y

is a 1-sequence-covering mapping [14] if for each y ∈ Y there exists x ∈ f−1(y)

satisfying the following condition: whenever {yn} is a sequence in Y converging to

a point y in Y , there exists a sequence {xn} of X converging to a point x in X such

that each xn ∈ f−1(yn). Obviously, if X is a metric space, then an ss-mapping ⇒

a cs-mapping ⇒ an s-mapping. However, we have the following facts.

Example 1. A weak-open s-image of a metric space is not a weak-open cs-image

of a metric space.

Let

S =
{ 1

n
: n ∈ 


}

∪ {0}, X = [0, 1]× S,

and let

Y = [0, 1] ×
{ 1

n
: n ∈ 


}
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have the usual Euclidean topology as a subspace of [0, 1] × S. Define a typical

neighbourhood of (t, 0) in X to be of the form

{(t, 0)} ∪

(

⋃

k>n

V (t, 1/k)

)

, n ∈ 
 ,

where V (t, 1/k) is a neighbourhood of (t, 1/k) in [0, 1]× {1/k}. Put

M =

(

⊕

n∈ �
[0, 1]× {1/n}

)

⊕

(

⊕

t∈[0,1]

{t} × S

)

and define f from M onto X such that f is an obvious mapping.

Then f is a compact-covering, quotient, two-to-one mapping from the locally

compact metric space M onto the separable, regular, non-Lindelöf, k-space X (see

Example 2.8.16 of [13] or Example 9.3 of [18]). It is easy to check that f is a

1-sequence-covering mapping. By Theorem 2.5 of [14], X has a point-countable

weak-base. Thus X is a weak-open s-image of a metric space by Theorem 2.5 of [4].

X has no compact-countable k-network. Indeed, suppose P is a compact-

countable k-network for X . Put

F = {{(t, 0)} : t ∈ [0, 1]} ∪ {P ∩ Y : P ∈ P}.

Since [0, 1] × {0} is a closed discrete subspace of X , F is a k-network for X . But

Y is a σ-compact subspace of X . Thus {P ∩ Y : P ∈ P} is countable, and so

F is star-countable. Since a regular k-space with a star-countable k-network is an

ℵ0-space (see [17]), hence X is a Lindelöf space, a contradiction. Thus X has no

compact-countable k-network. By Lemma 7 of [15], X has no compact-countable

weak-base. Hence X is not a weak-open cs-image of a metric space by Theorem 3.1.

Example 2. A weak-open cs-image of a metric space is not a weak-open ss-image

of a metric space.

Let X be a paracompact space with a point-countable base and not metrizable.

Then X has a compact-countable base, and so X has a compact-countable weak-

base. By Theorem 3.1, X is a weak-open cs-image of a metric space. But X is not

a 1-sequence-covering ss-image of a metric space because X is not a metric space.

Thus X is not a weak-open ss-image of a metric space by Proposition 3.3 of [5].
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