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Notes on cfp-covers

SHOU LIN, PENGFEI YAN

Abstract. The main purpose of this paper is to establish general conditions under which
Ts-spaces are compact-covering images of metric spaces by using the concept of ¢fp-
covers. We generalize a series of results on compact-covering open images and sequence-
covering quotient images of metric spaces, and correct some mapping characterizations
of g-metrizable spaces by compact-covering o-maps and mssc-maps.

Keywords: cfp-covers, compact-covering maps, metrizable spaces, g-metrizable spaces,
o-Maps, MssSc-maps

Classification: 54K40, 54E18, 54C10

In 1964, E. Michael introduced the concept of compact-covering maps. Let
f: X =Y. fis called a compact-covering map, if every compact subset of Y is
the image of some compact subset of X under f. Because many important kinds
of maps are compact-covering maps, such as closed maps on paracompact spaces,
many topologists have aimed to seek the characterizations of certain compact-
covering images of metric spaces since the seventies last century. E. Michael,
K. Nagami, Y. Tanaka and some Chinese topologists have obtained the charac-
terizations of images of metric spaces under the following maps: compact-covering
and open maps, compact-covering and open s-maps, sequence-covering (quotient)
s-maps, compact-covering (quotient) s-maps, compact-covering {quotient) com-
pact maps. The key to prove these results is to construct compact-covering maps
on metric spaces, but there is no method to unify these proofs. The purpose
of this paper is to develop the concept of cfp-covers, and give some consistent
methods to construct compact-covering maps.

We assume that all spaces are To, and maps are continuous and onto.

1. Compact-covering images of metric spaces

In 1960, V. Ponomarev proved that every first-countable space is an open image
of some Baire zero-dimension metric space (Proposition 2.4.4 in {10]). Now, we
generalize the Ponomarev’s method. Let P be a network of X, P = {Py}ach, let
A be endowed with discrete topology and M = {a = (o;) € AY : { Py, };en forms
a network at some point z4 in X}, then M is a metric space, and z, is unique
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for each o« € M. Define f : M — X by f(a) = zo. Then (f, M, X,P) is called
a Ponomarev’s system. The following lemma can be easily obtained by using the
Ponomarev’s method (Proposition 2.4.3 in [10}).

Lemma 1 ([14]). Let (f, M, X,P) be a Ponomarev’s system.

(1) f is a map if there exists a countable subset of P which forms a network
at x for every r € X.

(2) f is an open map if P is a countable local base of X.

(3) For every non-empty subset C of X, f~1(C) is a separable subspace of
M if C' meets only with countably many elements of P. [

To ensure that f in the Ponomarev’s system is a compact-covering map, P
must have some properties. Recall the concept of cfp-covers ([20]). Let K be a
subset of X. F is called a c¢fp-cover (i.e., compact-finite-partition-cover) of K, if
J is a cover of K in X such that it can be precisely refined by some finite cover
of K consisting of compact subsets of K.

Let P be a collection of subsets of X, and K be a subset of X. We say that
P has the cc-property on K, if whenever C is a non-empty compact subset of K,
and V' a neighborhood of C in X, then there exists a subset F of P such that F
is a cfp-cover of C and (JF C V.

The ce-property is related to the concept of strong k-networks posed by Chuan
Liu and Mumin Dai ([11]).

Theorem 2. Let (f, M, X,P) be a Ponomarev’s system. If K is a non-empty
compact subset of X such that some countable subset P(K) of P has the cc-
property on K, then there exists a compact subset L of M satisfying f(L) = K.

PROOF: Let P = {Fn},ep, and K be a non-empty compact subset of X. P(K)
is countable, hence there are only countably many c¢fp-covers of K by elements of
P(K). Let {P;} enumerate these cfp-covers and P; = {Pn}ser,. Then P; can be
precisely refined by some finite cover F; = {Fy}aer, of K consisting of compact
subset of K with each F, C P,.

Let L = {(o;) € [L;enTi i ien Fou # 0}. Then
(2.1) L is a closed subset of the compact set [[;.n T, so L is a compact subset
of A¥. Put a = (a;) € [[;enTi — L. Then (;cn Fo; = 0. From the compactness
of K, there exists ¢y € N such that {};«;, Fo; = @ Let W = {(5;) € [LienTi :
B; = a; for each ¢ < ig}. Then W is an open subset of [[;cyI'; such that « € W
and W N L = 0. Therefore, L is a closed subset of [ ],y Ts.

(22) L ¢ M and f(L) C K. Let @ = (o) € L, then (;eny Foy # 0. Pick
T € { };en Fo;- Then it will suffice to show that {Py, };cn is a network of = in X.
In this case, a € M and f(o) =z € K,so L C M and f(L) C K.

Let V be a neighborhood of z in X. Since K is a regular subspace of X, there
exists an open neighborhood W of z in K such that W = clg(W) C V. Now W
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is a compact subset of K and P(K) has the cc-property on K, so there exists a
finite collection P’ of P(K) such that P’ is a cfp-cover of W and | JP' c V. On
the other hand, K — W is a compact subset of K satisfying K — W C X — {z}, so
there exists a finite collection P” of P(K) such that P” is a ¢fp-cover of K — W
and YP” ¢ X — {z}. Put P* = P’ UP”. Then P* is a cfp-cover of K, so
P = P* for some k € N. But xz € F,,, C P, € Pi, thus Po, € P'and P,, C V.
Hence { P, };eN is a network of z in X.

(2.3) K C f(L). Let x € K. For each i € N, pick o; € I; such that z € F,,. Put
a = (o). Then o € L and f(a) = x by the proof of (2.2). So K C f(L).

In words, L is a compact subset of M such that f(L) = K. []

The cc-property provides that the compact subset K of X is the image of
some compact subset of a metric space. “cc” means an abbreviation of “compact-
covering”. Next, we shall give some corollaries of Theorem 2.

The first corollary is an inner characterization of compact-covering and open
images of metric spaces obtained by E. Michael and K. Nagami in 1973. Recall the
concept of outer bases ([14]). A collection B of open subsets of a space X is called
an outer base of a subset A in X, if there exists B, € Bsuch that x € B, C U
for every x € A and an open neighborhood U of z in X. Michael and Nagami
proved the following property of outer bases.

Lemma 3 ([14]). Let K be a compact and metrizable subset of a space X. If
K has a countable neighborhood base in X, then there exists a countable outer
base of K in X. L]

Lemma 4. Let K be a subset of X. If B is an outer base of K, then B has the
cc-property on K.

PROOF: Let C be a compact subset of K and V' a neighborhood of C in X. For
each x € C, there exists By € B such that z € By C V. From the regularity of
C, we can choose a relatively open set V, of C such that x € V, ¢ V. c B,.

{V }zec is a relatively open cover of C, thus it has a finite subcover {Va,; Yi<n-
Hence, C = | J;<,, Vi, C Ui<n Bz; €V, and {V,}i<p is a precise refinement of
{Bz; }icn This implies that B has the cc-property on K. ]

Corollary 5 ([14]). A space X is a compact-covering and open image of a metric
space if and only if every compact subset of X is a metnzable subspace and has
a countable neighborhood base in X .

PROOF: Let f : M — X be a compact-covering and open map, where M is
a metric space. Suppose K is a compact subset of X. Then there exists a
compact subset L of M such that f(L) = K. Since L is a compact subset of M,
fIL : L — M is a perfect map, whereas metrizability is persevered by perfect
maps (Theorem 2.2.1 in [10}), so K is a metrizable space. On the other hand,
from the metrizability of M, L has a countable neighborhood base {V,,},, eN in M,
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and f is an open map, thus {f(Vy)}, N is a countable neighborhood base of K
in X.

Conversely, suppose every compact subset of X is metrizable and has a count-
able neighborhood base. For each compact subset K of X, in view of Lemma, 3,
K has a countable outer base U(K) in X. U(K) has the cc-property on K by
Lemma 4. U = | J{U(K) : K is a compact subset of X} is a countable local base
of X. Let (f, M, X,U) be a Ponomarev’s system. Then f is a compact-covering
and open map by Lemma 1 and Theorem 2. So X is a compact-covering and open
image ot a metric space. L]

The second corollary concludes inner characterizations of compact-covering s-
images of metric spaces given by Pengfei Yan and Shou Lin in 1999 and compact-
covering open s-images of metric spaces given by E. Michael and K. Nagami in
1973. Recall the concept of cfp-networks ([19]). Let P be a cover of a space X.
P 1is called a cfp-network of X, if for every compact subset K of X and a neigh-
borhood V of K in X there exists F C P such that F is a c¢fp-cover of K and
UF c V. Obviously, cfp-networks are related to k-networks introduced by
P. O’Meara in 1971. Let P be a collection of subsets of X. P is called a k-
network, if for every compact subset K and a neighborhood V of K in X there
exists a finite subset F of P such that K C | JF C V. It is easy to see that every
k-network consisting of closed sets is a ¢fp-network, and every cfp-network is a
k-network.

Lemma 6. Every base of a space X is a cfp-network of X.

PROOF: Let B be a base of X. For each compact subset K of X and a neigh-

borhood V of K in X, since B is an outer base of K, by Lemma 4, there exists
a finite subset F of B such that F is a ¢fp-cover of K and | JF C V. So B is a
cfp-network of X.

Certain point-countable covers can be used to characterize various s-images of
metric spaces. The following cfp-property of point-countable collections is similar
to the famous Miscenko’s lemma. For every subset A of X, F is called a minimal
cfp-cover of A, if F is a cfp-cover of 4, and F — {F'} is not a cfp-cover of A for
every F' € F.

Lemma 7 ([19]). Suppose P is a point-countable collection of subsets of a
space X. Then every compact subset of X has only countably many minimal
cfp-covers by elements of P. B

Corollary 8 ([19]). A space X is a compact-covering s-image of a metric space
if and only if X has a point-countable ¢ fp-network.

PROOF: Necessity. Suppose X is a compact-covering s-image of a metric space
M. M is a metrizable space, thus M has a o-locally finite base P. By Lemma 6,

P is a cfp-network of M. Since cfp-networks are preserved by compact-covering



Notes on cfp-covers 299

maps, f(P) is a cfp-network of X. f is an s-map, so f(P) is a point-countable
collection. Hence f(P) is a point-countable cfp-network of X.

Sufficiency. Suppose X has a point-countable c¢fp-network P and let (f, M, X, P)
be a Ponomarev’s system. Then f : M — X is an s-map by Lemma 1. In view
of Theorem 2, to prove that f is a compact-covering map, it will suffice to show
that there exists a countable subset P(K) of P with cc-property on K for every
compact subset K of X.

By Lemma, 7, if {P;},.n is a collection of minimal c¢fp-covers of K by elements
of P, then P(K) = {J;cn Pi is countable and has the cc-property on K. In fact,
for each non-empty compact subset C of K and a neighborhood V of C in X,
since K is a compact subset of X, K is a normal subset of X, so there exists an
open neighborhood W of C in K such that W C V. P is a cfp-network of X, thus
there is a finite subset P’ of P such that P’ is a cfp-cover of W and | JP' C V.
On the other hand, K — W C X — C, so we can pick a finite subset P of P such
that P” is a ¢fp-cover of K — W and |JP” € X — C. Let P* = P' UP”. Then
P™ is a cfp-cover of K and Py, C P* for some k € N. Suppose Py = {Pa}, cr is
precisely refined by the finite cover {Ka},cr of K consisting of compact subsets
of K and put F = {FPy € P : KoNC # 0}. Then F is a cfp-cover of C such
that | JF C V. Hence P(K) has the cc-property on K.

Summarizing, f is a compact-covering s-map. B

Corollary 9 ([14]). A space X is a compact-covering and open s-image of a
metric space if and only if X has a point-countable base.

PROOF: It is easy to show that open s-images of metric spaces have point-
countable bases. Let B be a point-countable base of X and (f, M, X, B) be a
Ponomarev’s system. In view of Lemma 1, f is an open s-map. f is a compact-
covering map by Lemma 6 and Corollary 8. ]

The third corollary is the inner characterization of sequence-covering and quo-
tient s-images of metric spaces proved by Y. Tanaka in 1987. Recall the concepts
of sequence-covering maps and cs*-networks. A map f : X — Y is called a
sequence-covering map ([6]), if each convergent sequence of Y is the image of
some compact subset of X under f. A collection P of subsets of X is called a
cs*-network ({5]), if whenever {z,} is a sequence converging to a point x € U
with U open in X, then {z} U {z,, : i € N} C P C U for some subsequence {zn, }
of {z,} and some P € P.

Obviously, every cfp-network of X is a es*-network of X.

Lemma 10. Let P be a point-countable cs*-network, and K be a convergent
sequence (including its limit). Then there is a countable subset P(K) of P with

the cc-property on K.

PRrROOF: Let P(K) ={P € P: PN K # 0}. Since P is point-countable, P(K) is
a countable subset of P. Suppose C is a non-empty compact subset of X and V is
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a neighborhood of C in X . If C is a finite set, because X is a Ty-space and P is a,
network of X, there is a finite subset F of P such that the intersection of C with
elements of F includes only one point and C C (JF C V. So F is a cfp-cover
of C and | JF C V. Suppose C is an infinite set, put C = {z} U {z, : n € N},
where {z,} converges to z, and P’ = {P € P:z € P C V} = {P;}ien. We
shall show that there exists a kp € N such that z,, € | J;<;, F; for all but finitely
many n € N, If not, we can pick a subsequence {z,,} of {z,} such that each
T, € X —UJ;<x P;. So each P; only includes finitely many elements of {z,,}.
But P is a cs*-network of X, hence there is a P € P such that P C V and some
subsequence of {zy, } is included in P, thus P = Py, for some m € N. Hence Py,
includes infinitely many elements of {z, }, a contradiction.

So C — U<k, P is a finite set and C N P; is a non-empty closed set. Without

losing generality, we can assume that C' —| ;< F; is non-empty. Then there is a
finite subset P’ of P such that P’ is a cfp-cover of C —~ | J;<y, P, UP’' C V and
every element of P’ meets with C. Let F = {F;};;, UP'. Then F is a cfp-cover
of C and | JF C V, so P(K) has the cc-property on K. C

Corollary 11 ([6], [17]). The following are equivalent for a space X:

(1) X is a quotient s-image of a metric space;
(2) X is a sequence-covering and quotient s-image of a metric space;
(3) X is a sequential space with a point-countable cs*-network.

PRrOOF: (1) = (3). Let f: M — X be a quotient s-map, where M is a metric
space. Suppose B is a o-locally finite base of M, P = f(B). Since f is a quotient
s-map and sequentiality of spaces is preserved by quotient maps, X is a sequential
space and P is a point-countable cs*-network of X.

(3) = (2). Suppose P is a point-countable cs*-network of X and let (f, M, X, P)
be a Ponomarev’s system. In view of Lemma 1, f : M — X is an s-map. f is a
sequence-covering map by Lemma 10 and Theorem 2. X is a sequential space, so
the sequence-covering map f is a quotient map.

(2) = (1). It is trivial. ]

2. The characterizations of g-metrizable spaces

Recall the definition of g-metrizable spaces. A collection P = | ) cx Py of
subsets of a space X is called a weak base of X, if P satisfies that (1) Py is
a network of £ in X; (2) For each U,V € P, there exists W € P, such that
WcUnV; (3) Gc X is open iff for each z € G, there exists P € P, such that
P cCG.

P, is called a weak neighborhood base of z in X. X is gf-countable if X has
a weak base | J,.c x Pz, where each P; is countable. Also, X is g-metrizable if X
is a regular space with a o-locally finite weak base.

Obviously, every metric space is g-metrizable. L. Foged obtained the following
theorem for g-metrizable spaces.
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Lemma 12 ([3], [4]). The following are equivalent for a regular space X:

(1) X is a g-metrizable space;
(2) X has a o-discrete weak base;
(3) X is a gf-countable space with a o-locally finite k-network. I

By Corollary 3.8.6 in [10], g-metrizable spaces are quotient and compact images
of metric spaces, but the converse is not true (see Example 15). To find out a
suitable map to characterize g-metrizable spaces, we need the concept of o-maps
([8]). Let f: X — Y. f is called a o-map, if there exists a base B of X such
that f(B) is a o-locally finite collection in Y. Every map defined on a separable
metric space is a o-map. In this section, we shall show that a regular space is g-
metrizable iff it is a compact-covering, quotient, compact and o-image of a metric
space.

We extend the Ponomarev’s system to cover sequences of spaces. Let {P;} be a
cover sequence of a space X. {P;} is called a point-star network, if {st(z, P;)};cn
is a network of = for each z € X. Suppose {P;} is a point-star network of X,
for each i € N, put P; = {Fa},cp, and endow A; with the discrete topology.

Then M = {a = (o) € | l;enAi : {Pa; }ien forms a network at some point zq
in X} is a metric space and z, is unique for each a € M. Define f : M — X by
f(a) = zo. Then (f, M, X, P;) is also called a Ponomarev’s system.

Lemma 13. Let (f, M, X,P;) be a Ponomarev’s system.

(1) f is acompact map if {P;} is a point-star network consisting of point-finite
COVErS.

(2) For a compact subset K of X, if some finite subset of P; is a cfp-cover of
K for each i € N, then there exists a compact subset L of M such that

f(L) =K.

PROOF: Suppose {P;} is a point-star network of X. For each 7 € N, put
P; = {Pa}acp,- Then (1) holds in view of [7]. (A similar proof can be seen
by Proposition 2.9.5(3) in [10].)

Next, we shall show that (2) is true. Let K be a non-empty compact subset of
X such that for each i € N, there exists some finite subset P, of P; which forms a
cfp-cover of K. So there is a finite subset I'; of A; such that P] = {Pa},cr, can
be precisely refined by some finite cover { Ka }, ¢, of K, where Ky is a non-empty
compact subset of K for each a € I';. Put L = {(a;) € [T;enTi : Nien Ka; 7 0}
Then

(13.1) L is a closed subset of the compact subset []..nT';, so L is compact.
Suppose a = (¢;) € [[;enT'i — L. Then );cn Ko; = 0. By the compactness of K,
there exists ig € N such that [);; Ko, = 0. Let W = {(5;) € [ LienTi ¢ i = o
for each i < ip}. Then W is an open neighborhood of a in [[; .y I'; and WNL = 0.
Hence L is a closed subset of [ [;cnT- '
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(13.2) L ¢ M and f(L) C K. Suppose a = (a;) € L. Then (),cy Ka; # 9. Pick
T € {)jen Koy, then z € (;cn Pay, since {Fo, }ien is a network of x in X, so
ae M and f(a) =z € K. Hence L C M and f(L) C K.

(13.3) K C f(L). For every z € K and i € N, pick «; € I'; such that z € K. If
a = (), then @ € L and f(a) = = by the proof of (13.2). So K C f(L).
In words, L is a compact subset of M such that f(L) = K. 1

Theorem 14. A regular space is g-metrizable if and only if it is a compact-
covering, quotient, compact and o-image of a metric space.

PROOF: Let X be a g-metrizable space. By Lemma 12, X has a o-discrete weak
base P. Since X is a regular space, we can assume that each member of P is a
closed set of X. Put P = |J;cn Bi = U,ex Pz, where B; is a discrete collection of
closed sets of X, and P is a weak neighborhood baseof z in X. For each 7 € N, let
Qi ={xe X :PenNB; =0}, U; = B;U{Q;}. Then l; is a locally finite cover of X.
We shall show that for each non-empty compact subset K of X, there exists a finite
subset of {{; which forms a ¢fp-cover of /. In fact, since B; is a discrete collection,
K meets only finitely many members of U;. Let T'; = {a: By € B;, Bo N K # 0}.
For each o € T, put Ko = Ba N K, K; = K —{J,cr, Ka. All K5 and K are
closed subset of K, and K = K; U (Uaen Ka). We only need to show K; C Q.
K is metrizable as a compact subset of a g-metrizable space. Pick x € K;. There
exists a sequence {z,} of K — cheI‘i K converging to z. If P € P, N B;, then
P is a weak neighborhood of z, thus x,, € P whenever n 2> m for some m &€ N.
Hence z,, € K, for some o € I';, a contradiction. So P, N B; = 0, and = € Q.
This implies that K; C Q; and {Q;} U {Ba}aer, is a cfp-cover of K.

For each x € X and an open neighborhood U of z, pick P € P, satistying
P Cc U. Then P € B; for some i € N. Thus st(z,U;) = P C U and {st(z,U;) };eN
is a network of z in X. So {U;} is a point-star network of X. Let (f, M, X,U;)
be a Ponomarev’s system. Then f : M — X is a compact-covering and compact
map by Lemma, 13.

Since g-metrizable spaces are sequential spaces, and f is a compact-covering
map, 1t is easily checked that f i1s a quotient map. Next, we shall show that
f:M — X isao-map. Foreachi N, letl; = {Ua}aen,. Forevery (o;) € M
and n € N, put B(oy,9,... ,05) = {(v;) € M : v; = o for each ¢ < n}.
Then f(B(al,ﬂ:g, « o ,an)) = ﬂii’in Uai- In fact, if Y = (’}’3‘) = B(al,ag, . e ,an),
then f(v) € MienUyvi C MNicn Uays 50 f(Blen,a,... ,an)) C [Ny Uay- Let
z € (i< Ua;. Since U; is a cover of X for each i € N, pick 8; € A; such that
zZ € Ugi_and the following holds: (1) 5; = o; forevery i < n; (2) Upg, € B; whenever
z € |JB; (Ug, is unique by the discreteness of B;). Then 8 = (5;) € | [;en Ai. If 2
is an isolated point in X, then there exists m € N and P € B,, such that {z} = P,
thus z € Qm by the construction of Qm, so Ug = P and {Ug, }, y is a network
of z in X. Suppose that z is an accumulation point in X. Since P, is a weak
neighborhood base of z in X, P, is an infinite set. Let U be a neighborhood of 2
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in X. There exists P € P,N By, such that P C U for some m > n, thus Ug , = P,
and {Uﬁi}ieN is a network of z in X. So 8 € B(aj,a2,...,ay) and z = f(0),
Ni<n Ua; C f(B(a1,9,...,an)). We have shown that f(B(a1,2,...,an)) =
ﬂi;n Un;. Since {B(aj,as,...,0n) : (o) € M,n € N} is a base of M and
/\t:n U; is a locally finite collection in X for every n € N, f is a o-map.
Conversely, let M be a metric space and f : M — X be a compact-covering,
quotient, compact and o-map. Since f is a o-map, f(B) is a o-locally finite
collection in X for some base B of M. B is a k-network of M and k-networks
are preserved by compact-covering maps, so f(B) is a o-locally finite k-network.
Also, X is a gf-countable space as a quotient compact image of a metric space
(see Theorem 2.9.14 in [10]). This implies that X is a g-metrizable space by
Lemma 12. ]

In 1977, E. Michael defined o-locally finite maps to characterize og-spaces ([13]).
The definition of o-locally finite maps is similar to c-map’s. Amap f: X = Y
is called o-locally finite if for every o-locally finite cover P of X, there exists
a refinement B of P such that f(B) is a o-locally finite collection. E. Michael
proved the following results in [13]: (1) A regular space X is a o-space if and only
if X is a o-locally finite image of a metric space; (2) f is a o-locally finite map if
there exists a network B of X such that f(B) is a o-locally finite collection of Y.
S0 every o-map is a o-locally finite map, but the converse is not true. See the
following example.

Example 15. There exist a metric space M and a compact-covering, open, com-
pact and o-locally finite map f : M — X such that X is not ¢g-metrizable.

Let X be the non-normal space from Example 2.5 in {2] which can be repre-
sented as a union of two open metric subspaces. Since X is first-countable but
not metrizable, X is not a g-metrizable space ([15]). Suppose that M is the topo-
logical sum of a cover of X consisting of two open metric subspaces. Then M is
metrizable. Let f : M — X be a natural map. Then f is a finite-to-one open
map, thus f is a compact-covering map (see Corollary 1.2 in [12]). Also X is the
union of countable many closed metric subspaces. So there exists a network B
of M such that f(B) is a o-locally finite collection. Hence f is a o-locally finite
map. By Theorem 14, f is not a o-map.

A completely regular, non-normal space which is the open and finite-to-one
image of a metric space under f is given directly in Example 3.2 in [16]. It can
be showed that f is a compact-covering and o-locally finite map.

The idea of Theorem 14 is inspired by a question posed by Y. Tanaka For a
metric space (X, d), f: X — Y is called a m-map, if d(f~1(y), X — f~1(V)) >0
for each y € Y and a neighborhood V of y in Y. Obviously, every compact map
on metric spaces is a m-map. The following result is proved in [8]: A regular space
X is g-metrizable if and only if X is a compact-covering, quotient, m and o-image
of a metric space. In 2001, Y. Tanaka asked the first author of this paper the
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following question: Is the result above true? In the proof of the result above,
the following lemma was used (see Lemma in [8]}: Let X be a metric space. If
f: X —Y is a quotient map, then Y is a symmetric space if and only if f is a
n~-map. Next, we shall show that the lemma above is not true.

Example 16. There exist a metric space M and a quotient map f : M — X
such that X is a symmetric space, but f is not a m-map.

By Example 2.9.8 and Theorem 2.9.7 in [10], we can find out a symmetric space
X such that X is not any quotient m-image of a metric space M.

Let M be the topological sum of all convergent sequencesin X,and f : M — X
the natural map. Then M is a metric space and f is a quotient map, so f is not
a T-Mmap.

This wrong lemma is a modification of Proposition 1.3 in [18]. (Proposition 1.3:
If X is a symmetric spaceand f : X — Y a quotient map, then Y is the symmetric
space iff f is a m-map for some equivalent symmetric on X.) By Example 16,
this modification to replace symmetrics by metrics is not true. On the other
hand, since the quotient n-images of metric spaces are gf-countable spaces (see
Lemma 2.9.4 in [10]), in view of Theorem 14, a regular space X is g-metrizable
iff X is the compact-covering, quotient, m and o-image of a metric space.

The first author of this paper proved the following mapping theorem on g-
metrizable spaces in [9] by using the wrong lemma above: For a regular space X,
X is g-metrizable iff X is the compact-covering, quotient, # and mssc-image of a
metric space. Recall the concept of mssc-maps ({9]). Let f: X — Y, where X isa
subspace of a product space [[;cy X;i- f is called a stratified strong compact map
or ssc-map, if for each y € Y there exists a sequence {V;} of open neighborhoods
of y in Y satisfying that p;(f—1(V)) is a compact subspace of X; for each 7 € N,
where p; : [[;cny X; — X, is the projective map. f is called a metrizable stratified
strong compact map or mssc-map if f is an ssc-map and X is a metric space for
each ¢t € N.

Lemma 17. mssc-maps are o-maps.

Proor: Let f: X — Y be an mssc-map. Then there exists a sequence {X;} of
metric spaces satisfying the conditions of mssc-maps. For each i € N, X; has a
o-locally finite base P; = {J;en Pij, where P;; is a locally finite collection of X;.

Put B;; = {X N (N pgl(ij)) : Pr; € Prjk <1i}, B= Ui,jem B;;. Then B is
a base of X. For each y € Y, there exists a sequence {V;} of open neighborhoods

of y in Y such that p;(f—1(V;)) is a compact subspace of X; for each ¢ € N. For
each i,j € N, p;(f~1(V;)) meets only elements of some finite subset Fi; of Pi;.

Since p;(f~H(V;)) N P # @ if and only if f~1(V;) npgl(P) # 0, Fi; € Fj; for each
Then {Q € f(By;) : VNQ # 0} is a finite set, thus f(B,;) is a locally finite
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collection of Y, so f(B) is a o-locally finite collection of Y. Hence f is a o-map.
C

Generally, o-maps need not be mssc-maps. For example, let Y be a non-locally
compact, separable metric space and put X; = Y for each ¢« € N. Then X; is
a subspace of [].cy X;. Let f : X1 — Y be the identical map. Since X is a
separable metric space, f is a o-map. If f is an mssc-map, then for each y € Y/,

there exists a sequence {V;} of open neighborhoods of y in Y such that p; ii (V;))
is a compact subspace of X; for each i € N, thus p1(f~1(V1)) = f~1(\) is a
compact subset of X1, so0.X; is a locally compact space, a contradiction. Hence
f is not an mssc-map.

Next, we shall show that the o-map f in Theorem 14 is an mssc-map. For
each x € X and ¢ € N, since U; is a locally finite cover of X, there exists an open
neighborhood V; of = in X such that V; only meets with finitely many elements
in ;. Let A; = {a € A; : Uy NV, # 0}. Then A; is a finite subset and
pi(f~H (Vi) (C A;) is a compact subset of A;, so f is an mssc-map. The following
corollary holds by the above-mentioned discussions.

Corollary 18. The following are equivalent for a regular space X :

(1) X is a g-metrizable space;

(2) X is a compact-covering, quotient, compact and mssc-image of a metric
space;

(3) X is a compact-covering, quotient, © and mssc-image of a metric space;

(4) X is a compact-covering, quotient, m and o-image of a metric space. [

Question 19. Let {X;} be a sequence of locally compact metric spaces and let
X be a subspace of [ [, Xi. If f: X — Y is a o-map, is f an mssc-map?
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