SPACES WITH COMPACT-COUNTABLE k-SYSTEMS*

J. LI (Zhangzhou) and S. LIN (Fuzhou)

Abstract. In this paper the relations among k-covers, cs^* -covers and k-systems are discussed. The following question is partially answered: Does every separable k'-space with a point-countable k-system have a countable k-system?

1. Introduction

In 1972, E. Michael established the characterizations of paracompact locally compact spaces under quintuple quotient mappings (i.e., open mapping, bi-quotient mapping, countably bi-quotient mapping, pseudo-open mapping and quotient mapping) (see [1]). In 1982, Y. Tanaka investigated spaces with a point-countable k-system [2]. In 1992, S. Lin established the relationships between paracompact locally compact spaces and all kinds of spaces with k-systems [3]. In this paper, we discuss the relations among k-covers, cs^* covers and k-systems, and partially answer a problem posed by Y. Tanaka [2]. As applications, we give some characterizations for spaces with a compactcountable k-system by means of certain maps on paracompact locally compact spaces, and obtain some corresponding results on locally compact metric spaces.

Let X be a space, and let \mathcal{P} be a cover of X. Then \mathcal{P} is called a k-cover of X if every compact $K \subset X$ is covered by some finite $\mathcal{P}' \subset \mathcal{P}$. \mathcal{P} is a cs^* -cover of X if for each sequence $\{x_n\}$ converging to $x \in X$, some $P \in \mathcal{P}$ contains the point x and points x_n frequently. Recall some basic definitions. A space X is determined by \mathcal{P} if $U \subset X$ is open (closed) in X if and only if $U \cap P$ is open (closed) in P for every $P \in \mathcal{P}$. If each element of \mathcal{P} is compact (resp. compact metric) in X, then such a cover is called a k-system (resp. mk-system) according to A. V. Arhangel'skii (see [4]). A space X is a k-space (resp. a sequential space), if it is determined by the cover consisting of all (resp. all compact metric) subsets of X. A space X is a k'-space (resp. Fréchet space) if, whenever $x \in \overline{A}$, there exists a compact subset C of X (resp. a sequence $\{a_n : n \in N\}$ in A) with $x \in \overline{A \cap C}$ (resp. $a_n \to x$).

^{*} This work is supported by the NSF of China (No. 19971048). Key words and phrases: k-system, k-cover, k-space, quotient mapping. 1991 AMS Subject Classification: 54D50, 54D55, 54C10.

^{0236–5294/1/&}lt;br/>\$5.00 © 2001 Akadémiai Kiadó, Budapest

A collection \mathcal{P} in X is compact-countable (resp. point-countable) if each compact subset of X (resp. each single point) meets only countable many members of \mathcal{P} .

A map $f: X \to Y$ is called compact-covering (see [5]) (resp. sequencecovering [6]) if each compact subset (resp. convergent sequence including its limit point) of Y is an image of a compact subset of X under f. A map f is a sequentially quotient map [7] (resp. subsequence-covering map [8]) if for each convergent sequence S of Y, there is a convergent sequence L (resp. compact subset L) of X such that f(L) is a subsequence of S. A map f is called a cL-mapping (resp. cs-mapping [9]) if for any compact subset C of Y, $f^{-1}(C)$ is a Lindelöf (resp. separable) subspace of X. A map f is quotient if whenever $f^{-1}(U)$ is open in X, then U is open in Y. A map f is pseudo-open if whenever $f^{-1}(y) \subset V$ with V open in X, then $y \in \text{int}(f(V))$.

In this paper, all spaces are regular and T_1 , and all mappings are continuous and onto.

2. Results

PROPOSITION 2.1. Suppose that \mathcal{P} is a point-countable cover of X. Then \mathcal{P} is a k-system if and only if X is a k-space and \mathcal{P} is a k-cover consisting of compact subsets.

PROOF. Necessity. Since X has a k-system, X is a k-space. So we must prove that \mathcal{P} is a k-cover of X. Suppose not. For each $y \in K$, where K is compact in X, let $(\mathcal{P})_y = \{P_i(y) : i \in N\}$. Inductively choose $y_n \in K$ such that $y_n \notin P_i(y_j)$ for i, j < n. Since K is compact in X, then $A = \{y_n : n \in N\}$ has a cluster point x. Let $L = A \setminus \{x\}$. Then L is not closed in X, and so there is $P \in \mathcal{P}$ such that $P \cap L$ is not closed in X, and hence P contains infinitely many y_n 's. Let $P = P_i(y_j)$ for some i and j, then there exists n > i, j such that $y_n \in P_i(y_j)$, a contradiction to the way that the y_n 's were chosen.

Sufficiency. Suppose that there exists $F \subset X$ such that $F \cap P$ is closed in X for each $P \in \mathcal{P}$, but F is not closed in X. By the sufficient conditions, $F \cap C$ is not closed in X for some compact $C \subset X$, and so $C \subset \cup \mathcal{P}'$ for some finite $\mathcal{P}' \subset \mathcal{P}$. However, $F \cap C = \cup \{ (F \cap P) \cap C : P \in \mathcal{P}' \}$ is closed in X, a contradiction. Hence X is determined by \mathcal{P} , and \mathcal{P} is a k-system for X.

From the proof of Proposition 1.2 in [11], we have:

PROPOSITION 2.2. Let \mathcal{P} be a point-countable cs^* -cover of X, and let each compact subset of X be a sequential space. Then \mathcal{P} is a k-cover of X.

PROPOSITION 2.3. Suppose X is a Fréchet space and \mathcal{P} is a k-cover of X, and $A \subset X$. If $x \in A$, then $x \in \overline{P \cap A}$ for some $P \in \mathcal{P}$.

PROOF. If $x \in A$, the conclusion is clear. So suppose $x \notin A$. There exists $x_n \in A$ with $x_n \to x$ in X because X is a Fréchet space. Let $K = \{x\} \cup \{x_n : n \in N\}$. Then $K \subset \cup \mathcal{P}'$ for some finite $\mathcal{P}' \subset \mathcal{P}$, and some $P \in \mathcal{P}'$ must contain infinitely many x_n 's, and this P has the required property.

THEOREM 2.4. Suppose that X is a separable Fréchet space, and a space in which every point is a G_{δ} . If X has a point-countable k-cover consisting of compact subsets of X, then X has a countable k-cover consisting of compact subsets.

PROOF. Let Q be a countable dense subset of X, and let \mathcal{P} be a pointcountable k-cover consisting of compact subsets of X. Let $\mathcal{R} = \{R : R \in \mathcal{P} \text{ and } R \cap Q \neq \emptyset\}$. By Proposition 2.3, \mathcal{R} is a countable cover consisting of compact subsets of X. We will show that \mathcal{R} is a k-cover of X. Let K be a compact subset of X and $x \in K$. Put $\mathcal{R} = \{R_n : n \in \omega\}$, where $x \in R_0$. We claim that there exists $n \in \omega$ such that $x \in \operatorname{int}_K \left(\bigcup_{i=0}^n R_i\right)$. Suppose not. Since X is a space in which every point is a G_{δ} , K is a first-countable subspace. So we can choose $x_n \in K \setminus \bigcup_{i \leq n} R_i$ such that $x_n \to x$. Because each R_n is compact and closed in X, we can also choose $q_{n,k} \in Q \setminus \bigcup_{i \leq n} R_i$ such that

 $q_{n,k} \to x_n$ as $k \to \infty$. But then x is in the closure of these $q_{n,k}$'s, so there exists a sequence $q_{n_j,k_j} \to x$ as $j \to \infty$. Since $x_n \neq x$ and $q_{n,k} \neq x$ for all n and k (because $x \in R_0$), we have $n_j \to \infty$ as $j \to \infty$. By Proposition 2.3, some $P \in \mathcal{P}$ contains infinitely many q_{n_j,k_j} 's. Then $P \in \mathcal{R}$, so $P = R_m$ for some $m \in \omega$. But $q_{n_j,k_j} \notin R_m$ when $n_j \geq m$, a contradiction. Thus \mathcal{R} is a k-cover of X.

COROLLARY 2.5. Suppose that X is a separable Fréchet space in which every point is a G_{δ} . If X has a point-countable k-system, then X has a countable k-system.

PROOF. Let \mathcal{P} be a point-countable k-system for X. By Proposition 2.1, \mathcal{P} is a k-cover consisting of compact subsets of X. In view of Theorem 2.4, X has a countable k-cover \mathcal{P}' consisting of compact subsets. By Proposition 2.1, \mathcal{P}' is a countable k-system.

REMARK. Corollary 2.5 partially answers the following question posed by Tanaka in [2]: Does every separable k'-space with a point-countable k-system have a countable k-system?

THEOREM 2.6. For a space X, the following are equivalent:

(1) X is a compact-covering and quotient cL-image of a paracompact locally compact space.

(2) X is a quotient cL-image of a paracompact locally compact space.

(3) X has a compact-countable k-system.

PROOF. $(1) \Rightarrow (2)$. Obvious.

 $(2) \Rightarrow (3)$. Suppose $f: M \to X$ is a quotient cL-mapping, where M is a paracompact locally compact space. Then M has a locally-finite open cover \mathcal{B} such that for each $B \in \mathcal{B}, \overline{B}$ is compact in M. Let $\mathcal{P} = \{f(\overline{B}) : B \in \mathcal{B}\}$. Since f is a cL-mapping, then \mathcal{P} is a compact-countable cover consisting of compact subsets of X. By virtue of Lemma 1.7 in [6], X is determined by \mathcal{P} because f is a quotient mapping. Thus \mathcal{P} is a compact-countable k-system.

 $(3) \Rightarrow (1)$. Let \mathcal{P} be a compact-countable k-system for X. Then X is a k-space. By Proposition 2.1, \mathcal{P} is a k-cover consisting of compact subsets. Put $M = \oplus \mathcal{P}$, and let $f: M \to X$ be the natural map. Then M is a paracompact locally compact space, and f is a cL-mapping. We shall show that f is compact-covering. In fact, for any compact subset K of X, since \mathcal{P} is a k-cover of X, there is a finite $\mathcal{P}' \subset \mathcal{P}$ such that $K \subset \cup \mathcal{P}'$. Let $L = \oplus \{K \cap P : P \in \mathcal{P}'\}$. Then L is compact in M with f(L) = K, and so f is compact-covering. Because X is a k-space, f is also a quotient mapping. This completes the proof of the theorem.

THEOREM 2.7. For a space X, we consider the following conditions.

(1) X is a sequentially quotient cL-image of a paracompact locally compact space.

(2) X has a compact-countable cs^* -cover consisting of compact subsets of X.

(3) X is a sequence-covering cL-image of paracompact locally compact space.

(4) X is a subsequence-covering cL-image of a paracompact locally compact space.

Then $(1) \iff (2) \Rightarrow (3) \Rightarrow (4)$. If X is also a sequential space, then $(4) \Rightarrow (1)$.

PROOF. (1) \Rightarrow (2). Assume that M is a paracompact locally compact space, and that $f: M \to X$ is a sequentially quotient cL-mapping. Then M has a locally-finite open cover \mathcal{B} such that for each $B \in \mathcal{B}$, \overline{B} is compact in M. Let $\mathcal{P} = \{f(\overline{B}) : B \in \mathcal{B}\}$. Since f is a cL-mapping, then \mathcal{P} is a compact-countable cover consisting of compact subsets of X. We shall show that \mathcal{P} is a cs^* -cover of X. In fact, for any sequence $\{x_n\}$ with $x_n \to x \in X$, because f is sequentially-quotient, there are a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ and some sequence $\{y_i\}$ with $y_i \in f^{-1}(x_{n_i})$ such that $y_i \to y \in f^{-1}(x)$ in M. Thus some $B \in \mathcal{B}$ contains $\{y_i\}$ eventually because \mathcal{B} is an open cover of M. Hence $f(\overline{B}) \in \mathcal{P}$ contains $\{x_{n_i}\}$ eventually. This shows that \mathcal{P} is a cs^* -cover of X.

 $(2) \Rightarrow (1)$. Suppose that \mathcal{P} is a compact-countable cs^* -cover consisting of compact subsets of X. Put $M = \oplus \mathcal{P}$, and let $f : M \to X$ be the natural map. Then M is a paracompact locally compact space, and f is a cL-map. We shall show that f is sequentially quotient. In fact, for any sequence $\{x_n\}$ with $x_n \to x$ in X, denote $S = \{x\} \cup \{x_n : n \in N\}$. Then there is a finite $\mathcal{P}' \subset \mathcal{P}$ such that $S \subset \cup \mathcal{P}'$. Let $L = \oplus \{P \cap S : P \in \mathcal{P}'\}$. Then L is sequen-

tially compact in M with f(L) = S, and so there is a convergent sequence L' such that f(L') is a subsequence of S. This shows that f is sequentially quotient.

 $(2) \Rightarrow (3)$. From the proof of $(2) \Rightarrow (1)$, we have that L is compact in M with f(L) = S.

 $(3) \Rightarrow (4)$. Trivial.

Suppose that X is also a sequential space, and $f: M \to X$ is subsequence-covering. From the proof of Lemma 1.6 in [11], f is sequentially quotient. Hence

 $(4) \Rightarrow (1)$ holds.

By Proposition 2.2, Theorem 2.6 and Theorem 2.7, we have:

COROLLARY 2.8. The following are equivalent for a sequential space X: (1) X is a compact-covering and quotient cL-image of a paracompact locally compact space.

(2) X is a quotient cL-image of a paracompact locally compact space.

(3) X is a sequentially quotient and quotient cL-image of a paracompact locally compact space.

(4) X is a sequence-covering and quotient cL-image of a paracompact locally compact space.

(5) X is a subsequence-covering and quotient cL-image of a paracompact locally compact space.

(6) X has a compact-countable k-system.

COROLLARY 2.9. The following are equivalent for a space X:

(1) X is a compact-covering and quotient cs-image of a locally compact metric space.

(2) X is a quotient cs-image of a locally compact metric space.

(3) X is a sequentially quotient and quotient cs-image of a locally compact metric space.

(4) X is a sequence-covering and quotient cs-image of a locally compact metric space.

(5) X is a subsequence-covering and quotient cs-image of a locally compact metric space.

(6) X has a compact-countable mk-system.

By Corollary 2.9, and Theorem 13 in [12], we have:

COROLLARY 10. The following are equivalent for a space X:

(1) X is a pseudo-open cL-image of a paracompact locally compact space.

(2) X is a k'-space with a compact-countable k-system.

COROLLARY 11. The following are equivalent for a space X:

(1) X is a pseudo-open cs-image of a locally compact metric space.

(2) X is a Fréchet space with a compact-countable mk-system.

References

- [1] E. Michael, A quintuple quotient quest, Gen. Top. Appl., 2 (1972), 91-138.
- [2] Y. Tanaka. Point-countable k-system and products of k-spaces, Pacific J. Math., 141 (1982), 199-208.
- [3] S. Lin, On the image of paracompact locally compact spaces, J. Math., **12** (1992), 281–286.
- [4] A. Arhangel'skii, Factor mappings of metric spaces, Dokl. Akad. Nauk. SSSR, 155 (1964), 247-250 (in Russian).
- [5] E. Michael, N₀-spaces, J. Math. Mech., 15 (1996), 983-1002.
- [6] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113 (1984), 303-332.
- [7] J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czech. Math. J., 26 (1976), 174–182.
- [8] S. Lin, C. Liu and M. Dai, Images on locally separable metric spaces. Acta Math. Sinica, New Series, 13 (1997), 1-8.
- [9] Z. Qu and Z. Gao, Spaces with compact-countable k-networks, Math. Japonica, 49 (1999), 199-205.
- [10] S. Lin, Generalized Metric Spaces and Mappings, Chinese Science Press, (Beijing, 1995).
- [11] Y. Tanaka, Point-countable covers and k-networks, Topology Proc., 12 (1987), 327– 349.
- [12] A. Arhangel'skii, On quotient mappings on metric spaces, Dokl. Akad. Nauk SSSR, 155 (1964), 247–250 (in Russian).

(Received December 1, 1999; revised January 12, 2000)

DEPARTMENT OF MATHEMATICS ZHANGZHOU TEACHER'S COLLEGE ZHANGZHOU, FUJIAN 36000 P. R. CHINA

DEPARTMENT OF MATHEMATICS FUJIAN NORMAL UNIVERSITY FUZHOU, FUJIAN 350007 P. R. CHINA