SPACES WITH COMPACT-COUNTABLE k -SYSTEMS*

J. LI (Zhangzhou) and S. LIN (Fuzhou)

Abstract. In this paper the relations among k -covers, cs -covers and k systems are discussed. The following question is partially answered: Does every separable κ -space with a point-countable κ -system have a countable κ -system!

1. Introduction

In 1972, E. Michael established the characterizations of paracompact locally compact spaces under quintuple quotient mappings (i.e., open mapping, bi-quotient mapping, countably bi-quotient mapping, pseudo-open mapping and quotient mapping) (see [1]). In 1982, Y. Tanaka investigated spaces with a point-countable k-system $[2]$. In 1992, S. Lin established the relationships between paracompact locally compact spaces and all kinds of spaces with κ -systems [3]. In this paper, we discuss the relations among κ -covers, cs covers and k-systems, and partially answer a problem posed by Y. Tanaka [2]. As applications, we give some characterizations for spaces with a compactcountable k-system by means of certain maps on paracompact locally compact spaces, and obtain some corresponding results on locally compact metric spaces.

Let X be a space, and let P be ^a cover of X. Then P is called ^a k-cover of X if every compact $K \subset X$ is covered by some finite $\mathcal{P}' \subset \mathcal{P}$. \mathcal{P} is a cs^{*}-cover of X if for each sequence $\{x_n\}$ converging to $x \in X$, some \mathcal{P} is a cs^{*}-cover of X if for each sequence $\{x_n\}$ converging to $x \in X$, some $P \in \mathcal{P}$ contains the point x and points x_n frequently. Recall some basic definitions. A space X is determined by \mathcal{P} if $U \subset X$ is open (closed) in X if and only if $U \cap P$ is open (closed) in P for every $P \in \mathcal{P}$. If each element of P is compact (resp. compact metric) in X, then such a cover is called a k-system (resp. mk -system) according to A. V. Arhangel'skii (see [4]). A space X is a k -space (resp. a sequential space), if it is determined by the cover consisting of all (resp. all compact metric) subsets of X . A space X is a k' -space (resp. Freehet space) is, whenever \mathcal{F} and there exists a compact subset \mathcal{F} and \mathcal{F} are exists a compact subset C of of order exists a compact subset C of order exists a compact subset C of order exists a $\mathcal{L} = \{x \in \mathbb{R}^n : x \in \mathbb{$

0236-5294/1/\$ 5.00 © 2001 Akadémiai Kiadó, Budapest

This work is supported by the NSF of China (No. 19971048). Key words and phrases: k -system, k -cover, k -space, quotient mapping. 1991 AMS Subject Classification: 54D50, 54D55, 54C10.

A collection process \mathcal{P} is compact-countable (resp. point-countable) if each \mathcal{P} compact subset of X (resp. each single point) meets only countable many

A map f : \mathbf{r} is called compact-covering (see Eq. (see Eq. (see Eq.) (resp. sequence-covering (see Eq.) covering [6]) if each compact subset (resp. convergent sequence including its limit point) of Y is an image of a compact subset of X under f . A map f is a sequential quotient map \mathbb{P}^1 (resp. subsequence-covering map \mathbb{P}^1 for each convergent sequence S of Y , there is a convergent sequence L (resp. compact subset L) of X such that $f(L)$ is a subsequence of S. A map f is called a cL -mapping (resp. cs-mapping [9]) if for any compact subset C of Y, $f^{-1}(C)$ is a Lindelof (resp. separable) subspace of Λ . A map f is quotient if whenever f^{-1} (U) is open in Λ , then U is open in I . A map f is pseudo-open if whenever $f^{-1}(y) \subset V$ with V open in X, then $y \in \text{int}(f(V))$.

In this paper, all spaces are regular and T_1 , and all mappings are continuous and onto.

2. Results

Proposition 2.1. Suppose that P is ^a point-countable cover of ^X. $\texttt{1}$ is a k-system if and only if $\texttt{2}$ is a k-space and P is a k-cover consisting of compact subsets.

PROOF. Necessity. Since X has a k-system, X is a k-space. So we must prove that P is ^a k-cover of X. Suppose not. For each ^y 2 K, where ^K \mathcal{L} and \mathcal{L} and is compact in the compact in $\mathcal{L} = \{y \mid y \in \mathcal{U} \mid y \in \mathcal{U} \mid y \in \mathcal{U} \}$ $P \setminus \{y\}$ is a new property in the contract of P . In the contract of $\mathcal{I}R$ is the contract of $\mathcal{I}R$ and \math such that $y_n \notin P_i(y_j)$ for $i, j < n$. Since K is compact in X, then $A = \{y_n :$ $n \in N$ has a cluster point x. Let $L = A \setminus \{x\}$. Then L is not closed in X, and so there is $P \in \mathcal{P}$ such that $P \cap L$ is not closed in X, and hence P contains infinitely many y_n 's. Let $P = P_i(y_j)$ for some i and j, then there exists $n > i, j$ such that $y_n \in P_i(y_j)$, a contradiction to the way that the y_n 's were chosen.

 S suppose that there exists \mathcal{L} \subset is such that \mathcal{L} is closed. in X for each $P \in \overline{P}$, but F is not closed in X. By the sufficient conditions, $F \cap C$ is not closed in X for some compact $C \subset X$, and so $C \subset \bigcup \mathcal{P}'$ for some First is not closed in X for some compact $C \subset X$, and so $C \subset \bigcup F$ for some finite $\mathcal{P}' \subset \mathcal{P}$. However, $F \cap C = \bigcup \{ (F \cap P) \cap C : P \in \mathcal{P}' \}$ is closed in X, mine $P \subset P$. However, $F \cap C = \cup_{\{ (F \cap F) \mid C \colon F \in P \}}$ is closed in Λ ,
a contradiction. Hence X is determined by P, and P is a k-system for X. (F $(P \cap P) \cap C : P \in \mathcal{P}'$ is closed
by P, and P is a k-system for is closed in \mathcal{N} is closed in \mathcal{N} . The contract of \mathcal{N}

From the proof of Proposition 1.2 in [11], we have:

PROPOSITION 2.2. Let P be a point-countable cs -cover of Λ , and let each compact subset of X be a sequential space. Then F is a k-cover of X .

Proposition 2.3.Suppose X is ^a Frechet space and P is ^a ^k-cover of X , and $A \subseteq X$. If $x \in A$, then $x \in T \cap A$ for some $P \in P$.
Acta Mathematica Hungarica 93, 2001

Proof. If x 2 A, the conclusion is clear. So suppose ^x 62 A. There exists $x_n \in A$ with $x_n \to x$ in X because X is a Fréchet space. Let $K = \{x\} \cup \{x_n :$ $n \in N$. Then $K \subset \bigcup P$ for some ninte $P \subset P$, and some $P \in P$ must con-
tain infinitely many x_n's, and this P has the required property. tain infinitely many x_n 's, and this P has the required property.

THEOREM 2.4. Suppose that X is a separable Fréchet space, and a space in which every point is a G_b . If Λ has a point-countable k-cover consisting o_f compact subsets of X , then X has a countable k-cover consisting of compact \blacksquare subsets.

Proof. Let Q be a countable dense subset of X, and let P be a pointcountable k-cover consisting of compact subsets of X. Let $\mathcal{R} = \{R : R \in \mathcal{P}\}$ and $R \cap Q \neq \emptyset$. By Proposition 2.3, \mathcal{R} is a countable cover consisting of compact subsets of X. We will show that R is a k-cover of X. We will show that R is a k-cover of X. Let K be w a compact subset of X and x ² K. Put ^R ⁼ ^fRn : ⁿ ² !g, where ^x ² R0. $\mathbf{r} = \mathbf{r} \mathbf{r}$ that there exists n $\mathbf{r} = \mathbf{r} \mathbf{r} \mathbf{r}$ $\left(\bigcup_{i=0}^{n} R_i\right)$. Suppose not. since in the space in the country point is a gradient in the space in the sub-countable sub-countable sub-coun space. So we can choose $\sum_{i \leq n}$ $\sum_{i=1}^{n}$ we can choose $\sum_{i=1}^{n}$

 $q_{n,k} \to x_n$ as $k \to \infty$. But then x is in the closure of these $q_{n,k}$'s, so there exists a sequence $q_{n,j,k_j} \to x$ as $j \to \infty$. Since $x_n \neq x$ and $q_{n,k} \neq x$ for all n and k (because $x \in R_0$), we have $n_i \to \infty$ as $j \to \infty$. By Proposition 2.3, some $P \in \mathcal{P}$ contains infinitely many q_{n_j,k_j} 's. Then $P \in \mathcal{R}$, so $P = R_m$ for some
 $m \in \mathcal{P}$. But $q_{n_j,k_j} \notin R_{n_j}$ when $n_i \geq m_i$ a contradiction. Thus \mathcal{R} is a k-cover $m \in \omega$. But $q_{n_j,k_j} \notin R_m$ when $n_j \geq m$, a contradiction. Thus $\mathcal R$ is a k-cover of X .

 $\sum_{i=1}^n$ is compact and compact and compact $\sum_{i=1}^n$ $\sum_{i=1}^n$ is choose $\sum_{i=1}^n$ is contained in $\sum_{i=1}^n$ is contained in $\sum_{i=1}^n$ is contained in $\sum_{i=1}^n$ is contained in $\sum_{i=1}^n$ is contained in

COROLLARY 2.5. Suppose that X is a separable Fréchet space in which every procedure is a G . If α has a point-countered to a point-county and it is a countable to countable komment and countered and countered and countered and countered and countered and countered and controller

Proof. Let P be a point-countable k-system for X. By Proposition 2.1, $\mathcal P$ is a k-cover consisting of compact subsets of X. In view of Theorem 2.4, Λ has a countable k-cover P -consisting of compact subsets. By Proposition 2.1, ν is a countable κ -system.

REMARK. Corollary 2.5 partially answers the following question posed by Tanaka in $[2]$: Does every separable k'-space with a point-countable k -system have a countable k -system?

THEOREM 2.6. For a space X , the following are equivalent:

 (1) X is a compact-covering and quotient cL-image of a paracompact lo- ϵ called the partice of ϵ .

(2) X is a quotient cL -image of a paracompact locally compact space. (3) X has a compact-countable k-system.

Proof. (1)) (2). Obvious.

(2)) (3). Suppose f : M \sim M is a model of \sim M is a close f \sim model where \sim . When paracompact locally compact space. Then M has a locally-finite open cover Since f is a cL-mapping, then P is a compact-countable cover consisting of f (B) f is being the function of B $\in \mathcal{B}$.
 $\lim_{\epsilon \to 0}$ of compact subsets of M virtue of Lemma 1.7 in [6], M is determined by Paris 2.7 in [6], M is determined by Paris 2.7 in [6], M because f is a quotient mapping. Thus P is a compact-countable k-system.

(3)) (1). Let P be a compact-countable k-system for \mathbb{R}^n is \mathbb{R}^n a k-space. By Proposition 2.1, P is a k-cover consisting of consisting of compact subsets. Put M = P, and let f : M is the natural map. The natural map is the natural map. The natural map is the n a paracompact locally compact space, and f is a cL -mapping. We shall show that f is compact-covering. In fact, for any compact subset K of X , since P is a k-cover of X, there is a finite $P' \subset P$ such that $K \subset \bigcup P'$. Let since P is a k-cover of Λ , there is a limite P \subset P such that $K \subset \cup P$. Let $L = \bigoplus \{K \cap P : P \in \mathcal{P}'\}$. Then L is compact in M with $f(L) = K$, and so f $L = \oplus \{K \mid F : F \in F\}$. Then L is compact in M with $f(L) = K$, and so f
is compact-covering. Because X is a k-space, f is also a quotient mapping. This completes the proof of the theorem.

THEOREM 2.7. For a space X , we consider the following conditions.

(1) X is a sequentially quotient cL-image of a paracompact locally compact space.

 (2) Λ has a compact-countable cs -cover consisting of compact subsets of X.

(3) X is a sequence-covering cL-image of paracompact locally compact space.

(4) X is a subsequence-covering cL-image of a paracompact locally compact space space space. The space of the space.

 T is a gradient (2) dependence in the sequential space, then T λ + λ).

Proof. (1)) (2). Assume that ^M is ^a paracompact locally compact space, and that f : M \sim M \sim M \sim M \sim 1. Then is a sequentially quotient classes of the mapping. Then if \sim M has a locally-finite open cover B such that for each $B \in \mathcal{B}$, \overline{B} is compact in M. Let $\mathcal{P} = \{f(\overline{B}) : B \in \mathcal{B}\}\$. Since f is a cL-mapping, then \mathcal{P} is a f (B) f is being the function of B $\in \mathcal{B}$. Since j
sisting of comp . Since f is a closed in the problem in the closed in compact-countable cover consisting of compact subsets of X . We shall show that P is a cs -cover of Λ . In fact, for any sequence $\{x_n\}$ with $x_n \to x \in \Lambda$, because f is sequentially-quotient, there are a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ and some sequence $\{y_i\}$ with $y_i \in f^{-1}(x_{n_i})$ such that $y_i \to y \in f^{-1}(x)$ in M. Thus some $B \in \mathcal{B}$ contains $\{y_i\}$ eventually because \mathcal{B} is an open cover of M. Hence $f(\overline{B}) \in \mathcal{P}$ contains $\{x_{n_i}\}\$ eventually. This shows that \mathcal{P} is a cs^* -cover $\in \mathcal{P}$ contains $\{x_{n_i}\}$ eventually. This shows that \mathcal{P} is a cs^* -cover of X .

 $(2) \Rightarrow (1)$. Suppose that P is a compact-countable cs -cover consisting of compact subsets of \mathbb{R}^n . Put M is and let \mathbb{R}^n is and let \mathbb{R}^n be the natural intervals of M map. Then M is a paracompact locally compact space, and f is a cL -map. We shall show that f is sequentially quotient. In fact, for any sequence $\{x_n\}$ with $x_n \to x$ in X, denote $S = \{x\} \cup \{x_n : n \in N\}$. Then there is a finite $\mathcal{P}' \subset \mathcal{P}$ such that $S \subset \bigcup \mathcal{P}'$. Let $L = \bigoplus \{P \cap S : P \in \mathcal{P}'\}$. Then L is sequen-

tially compact in M with $f(L) = S$, and so there is a convergent sequence L' such that $f(L')$ is a subsequence of S. This shows that f is sequentially quotient.

(2) (3). From the proof of (3). From the proof of (2) is compact in Γ is compact in Max in M with $f(L) = S$.

(3) (4) (4). Trivial.

Suppose that X is also a sequential space, and f is subsequently in the sequence of the sequencecovering. From the proof of Lemma 1.6 in [11], f is sequentially quotient. Hence

 λ (1) λ (1) λ) and λ (1) λ (1) λ (1) λ (1) λ (1) λ (1) λ

By Proposition 2.2, Theorem 2.6 and Theorem 2.7, we have:

COROLLARY 2.8. The following are equivalent for a sequential space X : (1) X is a compact-covering and quotient cL-image of a paracompact lo- ϵ called the partice of ϵ .

(2) X is a quotient cL-image of a paracompact locally compact space.

(3) X is a sequentially quotient and quotient cL-image of a paracompact local ly compact space.

(4) X is a sequence-covering and quotient cL-image of a paracompact local ly compact space.

(5) X is a subsequence-covering and quotient cL -image of a paracompact local ly compact space.

(6) X has a compact-countable k-system.

COROLLARY 2.9. The following are equivalent for a space X :

 (1) X is a compact-covering and quotient cs-image of a locally compact space.

 (2) X is a quotient cs-image of a locally compact metric space.

 (3) X is a sequentially quotient and quotient cs-image of a locally compact metric space.

(4) X is a sequence-covering and quotient cs-image of a locally compact metric space.

(5) X is a subsequence-covering and quotient cs-image of a locally compact metric space.

(6) X has a compact-countable mk-system.

By Corollary 2.9, and Theorem 13 in [12], we have:

COROLLARY 10. The following are equivalent for a space X :

(1) X is a pseudo-open cL -image of a paracompact locally compact space.

(2) X is a k' -space with a compact-countable k-system.

COROLLARY 11. The following are equivalent for a space X :

(1) X is a pseudo-open cs-image of a locally compact metric space.

 (2) X is a Fréchet space with a compact-countable mk-system.

References

- [1] E. Michael, A quintuple quotient quest, Gen. Top. A ppl., 2 (1972), 91-138.
- [2] Y. Tanaka. Point-countable k -system and products of k -spaces, Pacific J. Math., 141 $(1982), 199-208.$
- [3] S. Lin, On the image of paracompact locally compact spaces, J. Math., 12 (1992), 281-286.
- [4] A. Arhangel'skii, Factor mappings of metric spaces, Dokl. Akad. Nauk. SSSR, 155 $(1964), 247-250$ (in Russian).
- [5] E. Michael, \mathcal{N}_0 -spaces, *J. Math. Mech.*, **15** (1996), 983-1002.
- [6] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable cov ers, $Pacific\ J. Math., 113\ (1984), 303-332.$
- [7] J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czech. Math. J., 26 (1976), 174-182.
- [8] S. Lin, C. Liu and M. Dai, Images on locally separable metric spaces. Acta Math. Sinica, New Series, 13 (1997), 1-8.
- [9] Z. Qu and Z. Gao, Spaces with compact-countable k-networks, Math. Japonica, 49 $(1999), 199-205.$
- [10] S. Lin, Generalized Metric Spaces and Mappings, Chinese Science Press, (Beijing, 1995).
- [11] Y. Tanaka, Point-countable covers and k -networks, Topology Proc., 12 (1987), 327– 349.
- [12] A. Arhangel'skii, On quotient mappings on metric spaces, Dokl. Akad. Nauk SSSR, 155 (1964), 247-250 (in Russian).

(Received December 1, 1999; revised January 12, 2000)

DEPARTMENT OF MATHEMATICS ZHANGZHOU TEACHER'S COLLEGE ZHANGZHOU, FUJIAN 36000 P. R. CHINA

DEPARTMENT OF MATHEMATICS FUJIAN NORMAL UNIVERSITY FUZHOU, FUJIAN 350007 P. R. CHINA